Manual **CANopen Interface** esiMot

esitron-electronic GmbH

Internet: www.esitron.de E-Mail: info@esitron.de

Ernst-Zimmermann-Str. 18 Tel. +49 (0)7541-6000-0 D-88045 Friedrichshafen Fax +49 (0)7541-6000-11

Doc. No: 040.174.07

1. General	6
1.1 How to use this manual	6
1.2 Signs and Symbols	6
1.3 Safety instructions	6
1.4 Changes	6
1.5 Copyright	6
1.6 Conclusion	6
1.7 Room for notes	7
2. Preface	8
2.1 CANopen overview	8
2.2 Abbreviations	9
3. Abstract esiMot "all in one"	10
3.1 System description	11
3.2 Interfacing the esiMot	11
4. Operating Modes	12
4.1 Mode 1: Speed regulation	12
4.2 Mode 4: Positioning	12
4.3 Homing mode	12
4.4 Electronic Axle	13
5. Brake	14
5.1 Brake always open	14
5.2 Brake open on activation	14
5.3 Bake management – Clamping	15
5.4 Closing the brake on errors	15
6. Parameter Setting	19
6.1 Electronics configuration	19
6.2 Motor configuration	19
6.3 User configuration	20
6.4 Input / Output Functions	21
6.5 Regulator	22
6.6 Jog	23
7. Network Management	24
7.1 States	24
7.2 Slave Monitoring	24
7.3 LED Indicator	24
8. Installation	25
8.1 esiMot installation	25
8.2 Ballast resistor	25
8.3 Electrical Installation	25
8.4 Repairs	26

9. CANopen commissioning	27
9.1 Bus address, Bus termination and Baud rate	27
9.2 CANopen and RS-232	28
10. Device Profile Drives and Motion Control (DSP 402))29
10.1 Scope	29
10.2 Drive Profile Architecture	29
10.3 The state machine according to DSP 402	30
10.4 Factor group	33
10.5 Profile Position Mode	33
10.6 Profile Velocity Mode	36
10.7 Homing Mode	37
10.0 Electronic axie	41
14. Controller with Control and Statusward	72 AE
11. Controller with Control- and Statusword	45
11.1 Object 6040_h : Controlword	45
11.2 Object 604 T_h . Statusword	40
12. Object Dictionary	48
12.1 Scope	48
12.2 Communications Segment	50
12.3 Manufacturer specific segment	66
13. Diagnosis and trouble shooting	80
13 1 CAN error messages	80
13.2 Status LED's	80
13.3 Status description:	82
14. Schematic view	85
15. Technical Data	86
15.2 Ballast circuit	90
15.3 Standstill brake (Option)	90
15.4 RS232-Interface	90
15.5 Motors	91
15.6 Dimensions and position map	92
16. Connections	93
16.1 Signal connector X1	93
16.2 Power supply connector X2	93
16.3 Fieldbus connector X3	02
	93

18. Accessories	95
18.1 Programming kit Servo Link	
18.2 Assembled feed lines	
18.3 Plugs	
18.4 Bus accessories	
18.5 Signal Converter	
18.6 Power supplies	
18.7 Planetary Gear boxes	
19. Models	97
19.1 esiMot	
19.2 Gearboxes	97
20. Disposal	98
21. Bibliography	99

1. General

1.1 How to use this manual

This manual covers technical data and properties of the esiMot compact motor in the versions:

esiMot_/_.4xx CANopen Interface

There are other user guides for the other versions of the esiMot.

This user manual contains safety instructions which have to be observed

1.2 Signs and Symbols

DANGER

This sign indicates a risk of injury, if the instructions are not strictly observed.

Attention

This sign indicates a risk of damage to the product or other pieces of equipment, if the instructions are not strictly observed.

Note

This sign indicates tips and useful information for easier handling of the product

1.3 Safety instructions

\wedge	DANGER
	Please read this manual carefully before using the esiMot.
	In case of questions, please contact your dealer.
	Inappropriate use of this product may cause damages to the motors or
	other pieces of equipment or products.
	Make sure, the CE-Regulations are met by the complete system.
	Depending on the application, other national regulations, like UL or DIN,
	have to be met as well.
	Strictly observe safety precautions VDE0100, VDE0113, VDE0160;
	EN50178 and the accident prevention regulations of your employer's
	liability insurance. Other regulations may apply.
1 4 Changes	
1.4 Changes	
	I he information in this document is subject to changes without
	proclamation. The manufacturer accepts no liability in case of errors in
	this manual.
1.5 Convright	
	© All rights reserved. No part of this manual may be reproduced or
	transierred, in no form or with any means, neither electronic hor on
	nechanical way, including photo copying, or by any information logging
1.6 Conclusion	
	There may be working functions in the controller which are not described
	in this manual However there are no claims to these functions for new
	delivered or repaired parts
	We have checked this manual with the hard- and software. Yet there
	might be differences. We appreciate all suggestions for improvement.

1.7 Room for notes

2. Preface

2.1 CANopen overview

CANopen is a networking system based on the CAN serial bus.

The CANopen specifications cover amongst others application layer and communication profile (CiA DS-301) as well as recommendations for cables and connectors (CiA DRP303-1).

CANopen is supplemented by a number of standardized device profiles. Applicable for drives is the DSP402.

A CANopen device can be divided into three parts:

- Communication interface and protocol software
- Object dictionary
- Process interface and application program

The communication interface and protocol software provide services to transmit and to receive communication objects over the bus. The object dictionary describes all data types, communication objects and application objects used in this device. It is the interface to the application software. The elements required for the esiMot are described in this manual. However, if you're not using a controller with integrated CANopen handling or if you're not taking advantage of a protocol stack it's recommended to get at least the DS301.

CAN Specifications are available from:

CAN in Automation (CiA) GmbH Kontumazgarten 3 90429 Nuremberg GERMANY P: +49 (0) 911-928819-0 F: +49 (0) 911-928819-79 http://www.can-cia.org Mail: headquarters@can-cia.org

- The most important part of a CANopen device is the object dictionary. It is essentially a grouping of objects accessible via the network in an ordered pre-defined fashion. The object dictionary of the esiMot is in chapter 12. The overall function of a CANopen device is controlled by the state machine. The state machine and its transitions are described in chapter 10.3
- Ē

(F

See also bibliography at the end of this document.

2.2 Abbreviations COB	Communication Object. A unit of transportation in a CAN network. Data must be sent across a CAN network inside a COB. There are 2048 different COBs in a CAN network. A COB can contain at most 8 bytes of data.
COB-ID	Each COB is uniquely identified in a CAN network by a number called the COB Identifier (COB-ID). The COB-ID determines the priority of that \rightarrow COB for the \rightarrow MAC sub-layer.
Remote COB	A COB whose transmission can be requested by another device.
CSDO	Client →SDO
MAC	Medium Access Control. One of the sub-layers of the data link layer in the CAN reference model that controls who gets access to the medium to send a message.
NMT	Network Management. One of the service elements of the application layer in the CAN reference model. The NMT serves to configure, initialise and handle errors in a CAN network.
NODE-ID	The Node-ID of the NMT slave has to be assigned uniquely or 0. If 0, the protocol addresses all NMT slaves.
PDO RPDO	Process Data Object. The real-time data transfer is performed by PDOs. PDOs are transmitted in a non-confirmed mode. Receive \rightarrow PDO
500	Service Data Object
SSDO	The read and write access to entries of a device's object dictionary is performed with SDOs. Server \rightarrow SDO.
SYNC	Synchronisation Object.
TPDO	Transmit →PDO. The producer sends a TPDO with a specific identifier, which corresponds to RPDOs of one or more consumers.

3. Abstract esiMot "all in one"

The esiMot digital compact motor can handle speed control as well as positioning with brushless Servo-motors.

The brushless drive with integrated 4Q controller facilitates the troublefree connection to the common fieldbus CANopen. The fieldbus protocol CANopen DSP402 is supported.

There is a comfortable Windows-software available for setting-up operation, parameter setting, getting status information and diagnostics. The esiMot is available with 5 different motors from 120W to 600W.

Combinations with one to three stage planetary gear boxes offer output torque up to ca. 100 Nm.

DANGER

Wiring and start-up of this device may be done by trained personnel only. Read the manual carefully. Note especially the installation requirements and notes for initial start-up. Nonadherence to the instructions will result in loss of warranty and liability on the part of the manufacturer.

This unit monitors internal operation conditions as well as on equipment side.

However, malfunctions caused by defective elements cannot be prevented in any case.

Personal danger has to be avoided at system side by interrupting the operating voltage through an emergency stop chain

3.1 System description

The complete controller is in a compact housing which is flanged to the motor.

All electric connections to the complete system are done with 3 circular plug-in connectors, which face in direction of the axis (A-bearing shield). Configuration can be done through the serial RS232 interface using the PC-Software "Servo Link". Diagnostics are feasible via this interface as well. All parameters can be set through the fieldbus.

3.2 Interfacing the esiMot

The esiMot is controlled entirely via fieldbus.

Digital inputs and outputs may be assigned to desired functions. See table of functions on page 21ff.

The available input and output functions are shown on page 21ff

4. Operating Modes

4.1 Mode 1: Speed regulation

The set value for the revolution speed is compared to the actual value. Load-dependent changes in revolution speed are compensated within current- and power-limits of motor.

The parameters for speed control (P- and I-gain) determine the reaction of the regulator.

4.2 Mode 4: Positioning

4.2.1 Absolute Positioning:

Move to an absolute target position (in increments). Positioning speed, acceleration ramp and deceleration ramp may be adjusted.

4.2.2 Relative Positioning:

Move a distance to the actual position (in increments). Positioning speed, acceleration ramp and deceleration ramp may be adjusted.

4.2.3 Jog-mode (Rapid traverse/creep speed):

Each positive edge on the input causes the drive to travel the amount of increments, which is adjusted in the parameters. Continuous input sets the drive to continuous move. The maximum travel is 2.140 million increments. After that the drive stops. A new positive edge starts it again. The speed is determined via parameters for rapid traverse and creep speed. The selection of what speed to take is determined by another input. Creep speed is used, if no input is assigned.

4.3 Homing mode

The homing modes of the DSP402 are supported. There is an additional parameter $209A_h$ to determine the homing deceleration.

(P)

Note

A SDO write access to object $607A_h$ during homing is treated as successful termination of the homing run. Thus the user is able to assign an arbitrary home position.

A detailed description of the homing modes you can find in chapter 10.7 on page 37.

4.4 Electronic Axle

To activate the operating mode "electronic axle" the inputs 3 and 4 have to be assigned to Clock/Channel A and Direction/Channel B.

There is the choice of clock/direction and channel A/Channel B in the user settings of the parameters. There it's also possible to invert the sense of rotation and to select the edge to detect. Furthermore, a gearratio may be selected.

(P)

Note

This operating mode is selected by setting the operation mode to -1 via object 6060_{h} .

5. Brake

Some esiMot are equiped with a standstill brake. See order code on page 97.

There are three different ways how the brake is treated by the controller.

- Brake remains open as long as 24V logic supply is present

- Brake is open when the regulator is active (enabled)

- Brake management: The brake is opened when a drive command is processed and closes after the target is reached.

5.1 Brake always open

24V at the logic supply open the brake. There is no other condition for this.

Parameter setting:

Motor / Standstill brake /

No

Danger

Hazard: Hanging loads may slump.

Note

This setting is recommended for initial setting up of the machine only.

5.2 Brake open on activation

The brake is open as long as the regulator is active. The brake remais open between drive commands. This setting allows fast starts between consecutive drive commands.

Parameter setting:

5.3 Bake management – Clamping

This brake management works as clamping. After each positioning the brake is closed automatically.

Parameter setting:

Motor / Standstill brake / O Yes User / Brake management /

Activated

Clamping

Sequence with new drive command

5.4 Closing the brake on errors

Errors which cause the regulator to shut-off or a missing enable input cause the brake to close. Depending on the type of error the controller reacts with different modes.

Note Ē

Not every error closes the standstill brake. The table in chapter 13 on page 80 shows the appropriate brake mode.

5.4.1 Brake-mode A:

The standstill brake and the output "Brake" is activated with the falling edge of the enable input. The regulator is disabled after the response-time of the brake.

The regulator is enabled immediately with the rising edge of the enable input. A drive command may only be given after the response-time. The user may check the output "Regulator state".

Brakemode A

The standstill brake and the output "Brake" is activated with the error. The motor regulator is disabled after the response-time "Closing".

The regulator is enabled immediately with error acknowledgement. A drive command may only be given after the response-time. The user may check the output "Regulator state".

()

Note

Not every error activates the standstill brake. The table in chapter 13 on page 80 shows the appropriate reaction and brake-mode

5.4.2 Brake-mode B:

The standstill brake and the output "Brake" is activated with the error. The motor regulator is disabled with the occurrence of the error.

The regulator is enabled immediately with error acknowledgement. A drive command may only be given after the response-time. The user may check the output "Regulator state".

Note (P

Not every error activates the standstill brake. The table in chapter 13 on page 80 shows the appropriate reaction and brake-mode

6. Parameter Setting

The PC-Software features different password protected levels to adjust parameters. Those parameters which require access-level 1 to adjust are marked with "¹" and those which require access-level 2 are marked with "²". Parameters marked with "³" are for information only and may be adjusted by the manufacturer only.

The correct adjustment of parameters depends on the motor-type and the fitted options.

6.1 Electronics configuration

Internal threshold values:	
Warning temperature	
output stage ³	
Error temperature	
output stage ³	
Warning temperature motor ³	
Error temperature motor ³	
Undervoltage motor ³	
Overvoltage motor ³	
Limits	
Maximum current ³	(Maximum the adjusted hardware limits)
Nominal current ³	(Maximum the adjusted hardware limits)
Ballast threshold ³	(Maximum the adjusted hardware limits)
Electronics data ³	Electronic name plate
Hardware configuration ³	I/Os and Fieldbus

6.2 Motor configuration

Basic Data	
Number of pole pairs* ³	1-6
Peak current ³	14 A (≤ hardware limits)
e.m.f. constant ³	[mV/1/min]
Motor overload time* ³	[s]
Motor-PTC* ³	Existing / not existing
Commutation mode ^{*3}	Mode A/B
Axis resolution*3	[incr./rev]
Nominal current*3	0 – 10 A (≤ hardware limits)
Nominal voltage*3	24 – 60V (≤ hardware limits)
Nominal speed ^{*3}	[rpm]
Actual value acquisition	
Speed ^{*3}	Via Hall sensors / Encoder
Travel *3	Via Hall sensors / Encoder
Motor data ³	Electronic name plate
Direction of control	
Speed regulator	Inverted / normal
Position control	Inverted / normal
Limits	
Maximum speed *3	Maximum the adjusted hardware limits
Standstill	
Brake ²	[Yes/No]
Response time "Close"*3	[msec]
Response time "Opening"*3	[msec]

Note Setting the brake to "no" keeps it open as long as 24V are supplied.

DANGER

This setting may cause hanging loads to slump when the regulator is switch off while 24V are supplied.

6.3 User configuration

Basic Data	
Bus address	1 - 255
Maximum speed at 100%* ²	[rpm]
Maximum current ²	[%] of peak current
Working mode ^{*2}	Speed regulation, Positioning, Electronic
Reference run ²	Axle
Operating Voltage ²	required / not required
Rotational direction	
Speed regulator ²	
Position control ²	Inverted / normal
Response to errors	Inverted / normal
Stop-mode on errors ¹	
Deceleration ramp ¹	Ramp stop / immediate stop
Reference run	[msec]
Acceleration ramp ²	
Deceleration ramp ²	[msec]
Search speed ²	[msec]
Positioning speed ²	[rpm]
Offset ²	[rpm]
Torque limit for "Homing to	[incr.]
block"	
Reference run mode ²	[%]
Range of Travel*	See table on page 36
Positive Direction	
Negative Direction	[incr.]
Electronic axle	[incr.]
Type ²	
Direction of rotation ²	Clock-Direction / Channel A – Channel B
Edge detection ²	Inverted / Normal
Ratio ²	Positive edge / Negative edge / Both
	edges
	1 : [0.001 9999.999]

(F

Note

Note

Bus address and baud rate may only be adjusted via software if not optional DIP-switches are fitted or all, i.e. bus – address and baud rate switches are set to off.

(F

There is no error message and to blink code when reaching the limit of travel. The drive just stops. To detect this state check status via RS232 or fieldbus.

(P)

Note

The limits of travel (Software limit switch) are effective after reference-run only. This is also valid if "No reference-run required" is selected in the parameters. Remedies: Use reference-run mode 35 (Set to zero) after power up.

(F

Note

The limits of travel are effective only for positioning (Jog-mode also). They are not valid in speed regulation mode.

Name:	Dependence:	Remarks:
Reference-	Level	Required for referencing. See chapter 0 on page 36.
switch		
Limit switch +	Level	0V at this input indicates that the limit switch in positive direction
		has been reached. (Use brake contact switch). 24V at input indicate
		travel inside admissible range.
Limit switch –	Level	0V at this input indicates that the limit switch in negative direction
		has been reached. (Use brake contact switch). 24V at input indicate
		travel inside admissible range.
Jog +	Level	A short pulse at this input causes the drive to move in positive
		direction for the number of steps which are set in the parameters.
		A permanent input causes the drive to go to continuous mode with
		the speed determined by the Rapid traverse/Creep-Speed input.
Jog -	Level	A short pulse at this input causes the drive to move in negative
		direction for the number of steps which are set in the parameters.
		A permanent input causes the drive to go to continuous mode with
		the speed determined by the Rapid traverse/Creep-Speed input
Rapid traverse	Level	0=Creep speed; 1=Rapid traverse for jog-mode
Clock /	Edge	Available on input 3 only
Channel A		
Direction /	Edge	Available on input 4 only
Channel B		

6.4 Input / Output Functions

(F

Note Independent of the direction of travel, each falling edge at any limitswitch input stops the drive. Reason for this procedure is the risk of confused limit switches during installation shall not cause damages.

(P)

Note

If the same function is assigned to different inputs, the first input becomes effective.

Available Output Functions:

Name:	Function
Ready	24V : Ready for operation
	0V: Error Message
Regulator active	24V : Regulator working
	0V: Regulator disabled
Error	24V: Error message
	0V: Ready for operation
Warning	24V: Motor or Controller has reached critical temperature, but still working.
	0V: No critical temperature reached.
Position reached	The drive has reached the desired position.
Axle in motion	24V: The drive is in motion; no new positioning command is accepted
	0V: The drive is ready for new commands.
Ballast active	24V: Ballast circuit is activated
	0V: Ballast circuit is not activated.

6.5 Regulator

6.5.1 Torque regulator

P - portion	1 – 1000	The proportional gain of the torque regulator.
I - portion	1 – 1000 1/s	Integral contribution of the control loop of the torque regulator.
I – limitation	0 – 100 %	Limitation of the integral contribution of the torque regulator

(F	Note
<i>w</i>	The torque regulator is trimmed to the motor. Changes are not
	recommended.

6.5.2 Speed regulator

P - portion ¹	1 – 1000	The proportional gain of the speed regulator
I - portion ¹	1 – 1000 1/s	Integral contribution of the control loop of the speed regulator
I - limitation ¹	0 – 100 %	Limitation of the integral contribution of the speed regulator
Ramp time to Vmax ¹	[msec]	Acceleration time from standstill to Vmax in the working mode "speed regulator"
Speed window	[rpm]	Permitted speed tolerance in speed regulation mode

6.5.3 Position controller

P - portion ¹	1 – 1000	The proportional loop gain of the positioning controller.
Target window ¹	Increments	Permissible error between set point and current
Lag error ¹	Increments	Permissible distance between calculated and actual position during the movement.
Store position safe against power outage? ²	Yes/no	The drive features the possibility to safe the actual position when powering down to avoid the need of repeatedly reference-runs.
		See procedure described in chapter 0
		The motor may not turn anymore or the stored position is not defined. Make sure the position is not changed when it's switched off.
		The optional absolute encoder provides the
		position at any time. Set "store position safe against power outage" to "no" with absolute encoder.

The target position window respectively the target velocity has to be reached to trigger the according CAN message.

6.5.4 Procedure to store position safe against power outage

The motor must not turn anymore. Switch off motor power supply first. Wait for the error message "undervoltage motor". Now the position is stored. The logic power supply may be switched off now.

6.6 Jog

Acceleration ramp ¹	[msec]	Acceleration in Jog mode. The stated ramp time represents the time from standstill to the max speed adjusted by the user. (Servo Link: Parameter/User/Max. speed at 100%) (See chapter 6.3).
Deceleration ramp ¹	[msec]	Deceleration in jog mode. The stated ramp time represents the time from the max speed adjusted by the user. (Servo Link: Parameter/User/Max. speed at 100%) to standstill. (See chapter 6.3).
Creep speed ¹	[rpm]	Speed for movements of tip increments or constant speed after completion of the acceleration ramp, as long as input "Rapid traverse" is not active.
Rapid traverse ¹	[rpm]	Speed for movements of tip increments or constant speed after completion of the acceleration ramp, as long as input "Rapid traverse" is active.
Tip increments ¹	[Incr.]	Number of increments the drive moves per each pulse on the input "Jog+" or "Jog-". ^{CF} If the number of tip increments is set to 0, there is no delay before the drive goes to continuous move. The rising edge of the input starts the movement with the speed determined by input "Rapid traverse".

¹ access level 1 required to modify this parameter.

7. Network Management

The Network Management or NMT provides functions for initialisation, configuration and monitoring of all subscribers on the bus. One device is needed in the network to work as a NMT master, the CANopen master. All other devices are called slave and may be monitored by the master. Each slave has a Node-ID in the range 1-127 to be clearly identifiable. Node-ID 0 may not be used because it is reserved for broadcasts, which means messages to all subscribers.

7.1 States

The following diagram shows the possible states and their transitions.

The different states are indicated with the bus LED. The indicator states and flash rates are implemented according to DR-303-3.¹

7.2 Slave Monitoring

7.2.1 Slave monitoring through Node Guarding

Node Guarding is a cyclic monitoring of the state of a slave through remote frame by the NMT master. This method is not recommended for new developments.

7.2.2 Heartbeat monitoring

The slaves cyclically transmit their state to the master and the other consumers. The time between two telegrams is set in the parameter index 1017h "Producer Heartbeat Time" in multiples of milliseconds.

7.3 LED Indicator

The actual operating state is indicated with the bus LED. The indicator states and flash rates are according to DR-303-3.²

The bus LED is a bi-colour LED which means that two states may be shown at the same time. The following sketch shows an example:

The error LED is red and indicates the status of the physical CAN layer. In this example it shows a NMT warning.

The Run LED is green and indicates the status of the CANopen network state machine. In this example it shows the state "PRE-OPERATIONAL".

8. Installation

8.1 esiMot installation

The surface of the esiMot may reach temperatures 30°C above ambience, depending on load conditions and ventilation. However, on heavy load conditions, the motor will get much hotter and will heat up additionally the esiMot.

The esiMot has to be mounted in a way a sufficient air flow is ensured.

Danger Make sure, the esiMot is not hot, before touching.

8.2 Ballast resistor

An external ballast resistor is required only on heavy load conditions to the esiMot. Many applications do not require an external ballast resistor.

The mounting of the ballast resistor has to be in a well ventilated place. The ballast resistor has to be mounted in a way a sufficient air flow is ensured.

Danger

The surface of the brake resistor can reach temperatures of up to 450°C.

The resistor may only be mounted in areas where heat can't cause fire. Take care that no flammable or heat-sensitive materials are close to the resistor.

8.3 Electrical Installation

8.3.1 Safety advice

Please read the manual before using this product.

Danger This unit monitors internal operation conditions as well as on equipment side.

However, malfunctions caused by defective elements cannot be prevented in any case.

Personal danger has to be avoided at system side by interrupting the operating voltage through an emergency stop chain.

We assume, as an expert, you are familiar with the relevant safety regulations, the accident prevention regulations of the employer's liability insurance company and the DIN regulations and that you can use and apply them.

Danger

Depending on the application, it might be necessary to implement additional safety equipment in order to get a fail-safe system.

8.3.2 Mounting instructions

Wiring and start-up of this device may be done by trained personnel only.

Keep wires as close to housing or enclosure as possible.

Route signal and power cables separately. The shield / PE connection must be a short cable (1,5mm²) and make full contact and conducts well to the housing or enclosure.

Danger

Make sure, all equipment is powered down, during installation of the esiMot.

As a general rule, the motor shall run freely, i.e. without load, for initial start-up.

8.3.3 Max voltage

Attention Exceeding the maximum admissible voltage for the motor power supply (depending on type of esiMot) or 30V for the logic power supply will destroy the esiMot.

8.3.4 EMC

The esiMot compact motor is compliant to applicable CE-regulations. However, emission of high frequency electromagnetic waves can cause interference to other pieces of equipment in some cases.

This might require additional remedial action. The use of EMI-filters is recommended.

Danger

Persons with a cardiac pacemaker may be affected by the magnetic radiation of the motor. Avoid exposure to magnetic radiation.

8.4 Repairs

Repairs may be conducted only by the manufacturer or authorised personnel.

Danger Unauthorised opening and inappropriate repairs may cause substantial risk on injury for the user or damage to equipment.

9. CANopen commissioning

9.1 Bus address, Bus termination and Baud rate

The <u>Bus address</u> is adjustable through the DIP-switches on the backside on the esiMot. The address range is 1 - 127.

072.436

Note

Each address used in a CANopen network must be unique and may not be used by other devices.

The <u>Bus termination</u> is activated through DIP-switches 9 and 10. To enable the termination resistor both have to be set to ON.

The <u>Baud rate</u> is adjusted via the 4-pin DIP-switch.

switch 1	switch 2	switch 3	switch 4	baud rate [kbit]
OFF	OFF	OFF	OFF	50
				100
OFF	ON	OFF	OFF	125
ON	ON	OFF	OFF	250
OFF	OFF	ON	OFF	500
ON	OFF	ON	OFF	1000

Note

In addition to this, the CAN – Bus address is adjustable through the PCsoftware "Servo Link". (Only if all DIP-switches are not assembled or set to OFF)

9.2 CANopen and RS-232

The programming and parameter interface of the esiMot is always active and may be used. Reading of parameters and the diagnostic mode do not interfere with the current state of the controller. To transmit parameters from PC to esiMot the regulator needs to be switched off. This means, if a drive command is executed it will be aborted. The state machine is reset with the command "Disable Voltage".

Note

CANopen and RS-232 are active at the same time!

10. Device Profile Drives and Motion Control (DSP 402)

10.1 Scope

The device profile DSP 402 is a very comprehensive profile and may contains up to 200 objects. In addition to this communication parameters need to be implemented as well.

(F

Note The DSP 402 is a draft standard proposal. Its implementation in the esiMot may differ from profiles of other manufacturers.

10.2 Drive Profile Architecture

The DSP402 defines a state machine and different modes of operation, which are shown in more detail on the next pages.

10.3 The state machine according to DSP 402

Ŧ

If a command is received which causes a change of state, this command must be processed completely and the new state attained before the next command can be processed.

10.3.1 Transitions

State Transition 0	START >> NOT READY TO SWITCH ON
	Action: The drive self-tests and/or self-initializes
State Transition 1	NOT READY TO SWITCH ON >> SWITCH ON DISABLED
Olale Hanshort I	Event: The drive has self-tested and/or self-initialized successfully
	Action: Activate communication
State Transition 2	
	Event: "Shutdown" command received from host
	Action: none
State Transition 3	READY TO SWITCH ON >> SWITCHED ON
	Event: "Switch On" command received from bost
	Action: The power section is switched on if it is not already switched on
State Transition 4	SWITCHED ON >> OPERATION ENABLE
	Event: "Enable Operation" command received from bost
	Action: The drive function is enabled
State Transition 5	
	Event: "Disable Operation" command received from best
	Action: The drive operation will be disabled
State Transition 6	
	Event: "Shutdown" command received from host
	Action: The nower section is switched off
State Transition 7	READY TO SWITCH ON >> SWITCH ON DISABLED
	Event: "Quick Stop" and "Disable Voltage" command received from bost
	Action: None
State Transition 8	OPERATION ENABLE >> READY TO SWITCH ON
Olale Hanshorro	Event: "Shutdown" command received from host
	Action: The nower section is switched off immediately and the motor is
	free to rotate if unbraked
State Transition 0	OPERATION ENABLE >> SWITCH ON DISARIED
Olale Hanshort 5	Event: "Disable Voltage" command received from bost
	Action: The power section is switched off immediately and the motor is
	free to rotate if unbraked
State Transition 10	SWITCHED ON >> SWITCH ON DISABLED
Olate Transition To	Event: "Disable Voltage" or "Quick Stop" command received from host
	Action: The power section is switched off immediately and the motor is
	free to rotate if unbraked
State Transition 11	OPERATION ENABLE >> OLICKSTOP ACTIVE
	Event: "Quick Stop" command received from host
	Action: The quick stop function is executed
State Transition 12	QUICK STOP ACTIVE >> SWITCH ON DISABLED
	Event: "Quick Stop" is completed or "Disable Voltage" command received
	from host. This transition is possible if the Quick-Ston-Option-Code is
	different from "5" (stay in the state "Quick Stop Active")
	Action. The power section is switched off
State Transition 13	All states >> FAULT REACTION ACTIVE
	Event: A fault has occurred in the drive
	Action: Execute appropriate fault reaction.
~	"Fault occurred" implies that a fault in the drive has occurred. This
	causes a state transition to the state FAULT REACTION ACTIVE In this
	state the device will execute the designated fault reaction. After the
	completion of this fault reaction the device will switch to the state FAULT.
	This state can only be left by the command "Fault Reset". but only if there
	is no active fault anymore.
	·

State Transition 14	FAULT REACTION ACTIVE >> FAULT Event: The fault reaction is completed.
_	Action: The drive is disabled. The power section may be switched off.
State Transition 15	FAULT >> SWITCH ON DISABLED
	Event: "Fault Reset" Command received from host.
	Action: A reset of the fault condition is carried out if no fault exists
	currently on the drive. After leaving the state FAULT the bit "Fault Reset"
	of the controlword has to be cleared by the host.
State Transition 16	QUICK STOP ACTIVE >> OPERATION ENABLE
	Event: "Enable Operation" command received from host. This transition
	is possible if the Quick-Stop-Option-Code is 5, 6, 7 or 8.
	Action: The drive function is enabled.
	If a command is received which causes a change of state, this command must be processed completely and the new state attained before the next
	command can be processed.

10.3.2 Overview to transition commands

(P)	All of this commands refer to the controlword (6040 _h)
Shutdown	Transitions 2, 6 and 8 State transition from SWITCH ON DISABLED; SWITCHED ON or OPERATION ENABLE to READY TO SWITCH ON
Switch on	Transition 3 State transition from READY TO SWITCH ON to SWITCHED ON
Disable voltage	Transitions 7, 9, 10 and 12 State transitions from READY TO SWITCH ON; OPERATION ENABLE; SWITCHED ON or QUICK STOP ACTIVE to SWITCH ON DISABLED Transition 12 depende on the Quick Step Option Code
(P)	Transition 12 depends on the Quick-Stop-Option-Code
Quick stop	Transitions 7, 10 State transitions from READY TO SWITCH ON or SWITCHED ON to SWITCH ON DISABLED Transition 11 State transition from OPERATION ENABLE to OLUCK STOP ACTIVE
Disable operation	Transition 5 State transition from OPERATION ENABLE to SWITCHED ON
Enable operation	Transition 4 State transition from SWITCHED ON to OPERATION ENABLE Transition 16 State transition from QUICK STOP ACTIVE to OPERATION ENABLE
Fault reset	Transition 15 State transition from FAULT to SWITCH ON DISABLED
(P	to be cleared by the host.

10.4 Factor group

The factor group is not supported by esiMot. Objects 6089_h to $608E_h$ are implemented in the CANopen Master for display purposes.

The following units apply:

Position Units	Increments.
Velocity Units	rpm
Acceleration Units	rpm/s

10.5 Profile Position Mode

10.5.1 Control of drive commands

The controller supports the mode "Single drive command" as well as "Sequence of drive commands".

• Single drive command:

When the drive has reached its target position it stops and communicates this to the master by setting the bit "target_reached".

The transmission of the drive data in mode "Single Drive Command" follows this scheme:

The master sets the ramp data (e.g. speed, acceleration and deceleration). When finished the master signals this to the controller with a rising edge of the bit "new_setpoint". Now the controller checks the data. This is acknowledged with "setpoint_acknowldege" if the data check is successful and the drive begins to move.

(P

Note

The master needs to reset the bit "new_setpoint" prior to the transmission of new drive data.

• <u>Sequence of drive commands:</u>

When the drive has reached its first target position it's aiming immediately the next one without stopping in between.

Another option is the use of the bit "Change Set Immediately". As soon as the command is sent, the new drive command is processed.

The transmission of the drive data in mode "Sequence of Drive Commands"

without the Bit change_set_immediately follows this scheme:

This sequence of drive commands is achieved when a drive command without the Bit "change_set_immediately" is given as soon as the first drive command is being processed. The drive moves to position p1 and proceeds immediately with the next drive command which is already in the memory. There is no stop in between. The position p2 is irrelevant. If p2 < p1 a ramp to the negative velocity is calculated in order to reach position p2.

If more than one position is transmitted as long as the drive is in motion, the last one sent is valid for the next positioning.

Note

The transition from one drive command to the next takes place at the target position. If there is no new target position stored into the buffer of the drive it stops. The drive does not stop in between drive commands if there is a new target position for the successive drive command.

Note

The transition between drive commands is position dependent.

Two drive commands with change set immediately

Note

The transition between drive commands is dependent on the time the command is sent

10.5.2 Acceleration and deceleration

The data for acceleration and deceleration is given in rpm/s.

Data Target velocity 60FF_h Target velocity 60FF_h V1 V1 V1 V1

In the controlword for the profile velocity mode is a HALT bit. At the moment, the HALT bit is set to 0 and a PDO 4 defines a target velocity, the drive ramps to this velocity. If there is following a new PDO containing with a new velocity, this new velocity is the new target velocity. Direct control of the velocity through SDO is not possible. In this case the drive needs to be stopped with the HALT bit and restarted again.

10.6 Profile Velocity Mode

In Profile Velocity Mode the acceleration ramp is defined by parameter $20A0_h$ (ramp time to V_{max}). The reference V_{max} is the Maximum Profile Velocity (607F_h).

The control of the velocity follows this scheme:
10.7 Homing Mode

The method is controlled by object 6098_h . The user configuration determines whether a homing run is required prior to any positioning. (Object $209C_h$)

10.7.1 Parameter

Acceleration ramp Deceleration ramp Search velocity Positioning velocity Home offset	[rpm/s] [msec] [rpm] [rpm] [incr.]	$\begin{array}{l} (Object \ 609A_h) \\ (Object \ 209A_h) \\ (Object \ 6099_h \ Sub-Index \ 1) \\ (Object \ 6099_h \ Sub-Index \ 2) \\ (Object \ 607C_h) \end{array}$
"Homing to block"	[%]	(Object 209B _h)

Homing method	Homing switch type	Search direction	Index pulse	Positioning direction
-3		To block / negative	e search direction	
-2		To block / positive	e search direction	
1	Brake contact (NLS)	-	yes	+
2	Brake contact (PLS)	+	yes	-
3	Make contact	+	yes	-
4	Brake contact	-	yes	+
5	Make contact	-	yes	+
6	Brake contact	+	yes	-
7	Make contact	+	yes	-
10	Make contact	+	yes	+
11	Make contact	-	yes	+
14	Make contact	-	yes	-
17	Brake contact	-	no	+
18	Brake contact	+	no	-
19	Make contact	+	no	-
20	Brake contact	-	no	+
21	Make contact	-	no	+
22	Brake contact	+	no	-
23	Make contact	+	no	-
26	Make contact	+	no	+
27	Make contact	-	no	+
30	Make contact	-	no	-
33	/	-	yes	/
34	/	+	yes	/
35		Zero s	ettina	

10.7.2 Abbreviations

- NLS: Negative Limit Switch
- PLS: Positive Limit Switch
- HS: Homing Switch
- IP: Index Pulse

10.7.3 Sequence

Modes with a circle around the number home to the index pulse. Modes with a square around the number home to the appropriate edge of the switch.

10.7.3.1 Homing to negative limit switch (NLS)

10.7.3.2 Homing to positive limit switch (PLS)

10.7.3.3 Homing on the home switch

10.7.4 Homing to the home switch:

10.7.5 Homing to the index pulse

10.7.6 Sequence "Homing to block"

Bit 4 in the controlword of homing mode starts the homing. The method is selected through object 6098_h . Homing to block is method -3 negative direction or -2 positive direction.

10.7.7 Sequence "Zero setting"

Bit 4 in the controlword of homing mode starts the homing. The method is selected through object 6098_{h} . "Zero setting" is method 35.

10.7.8 Homing with the absolute encoder

Bit 4 in the controlword of homing mode starts the homing. The method is selected through object $6098_{\rm h}$.

With absolute encoder only methods -3, -2, 17 ... 30 and 35 are supported.

The absolute encoder provides the actual position value at any time. It is not necessary to reference after each initialising. However, it is necessary to adjust the absolute encoder once.

In the parameter area – not accessible to the user – the travel range of the absolute encoder is stored. This is the maximum travel range for the drive. On delivery the same amount of revolutions in positive and negative direction are allowed. The parameter "Absolute encoder travel range offset" allows the adjustment of this to suit the application respectively the mounting situation.

The travel range offset is in respect to the available range. I.e. 40% of 50%.

10.8 Electronic axle

In the operation mode "Electronic Axle" the controller counts all clock/direction or Channel A/Channel B inputs and calculates them to movements of the axle. A ratio can be can be taken into account and adjusted in objects $0x20C0_h$ to $0x20C3_h$.

Note To activate the electronic axle the mode of operation must be set to "-1" (Object 6060_h; manufacturer specific mode). Inputs 3 and 4 need to be assigned to clock/direction respectively Channel A / Channel B.

10.8.1 Adjustments electronic axle

To configure the electronic axle the following parameters can be adjusted:

- Type (Clock/direction or Channel A / Channel B)
- Edge detection (rising, falling or both edges)
- Sense of rotation (normal or inverted)
- Ratio in 1/1000

Example:

The resolution of the motor encoder is 4096 lpr. The user has a hand wheel with 100 increments per revolution. One revolution of the hand wheel shall represent 10 motor revolutions. Only rising edges count and the mode is clock/direction.

$$\frac{10 \cdot 4096}{100} = 409,6$$

Generally:

Ratio:

 $Ratio = \frac{Enocder_resolution \cdot Number_of_revolutions \cdot Pulse_factor}{Increments_of_handwheel}$

Pulse factor is defined through the edge detection and the type of electronic axle. It is 1, 2 or 4.

10.9 Interpolated Position Mode The interpolated position mode can be used to control multiple axles or a single axle with time-interpolated set-points. The interpolated position mode uses the SYNC mechanism to synchronise. For synchronous operation the cycle time is defined using the object interpolation time period and the SYNC definition. Example: The SYNC Time shall be defined to 100ms. Every 100 msec a SYNC Message is sent by the Master. Parameter $60C2_h$, Sub-Index 1 = 100 Parameter $60C2_h$, Sub-Index 2 = -3 [1 msec] Parameter 60C3_h, Sub-Index 2 = 1 Another configuration could be: Parameter 60C2_b, Sub-Index 1 = 1 Parameter $60C2_h$, Sub-Index 2 = -1 [100 msec] Parameter 60C3_h, Sub-Index 2 = 1 10.9.1 Control- and Statusword Controlword: The Interpolated Position Mode is activated using Bit 4 of the controlword. Once this bit is set SYNC messages are used to take the position in 60C1_h, Sub-Index 1 and interpolate it.

Statusword:

Once the Interpolated Position Mode is active, Bit 12 of the statusword is set.

Once the Position is reached the "target reached" (Bit 10 of the statusword) is set.

There are two different interpolation modes selectable. One is the linear interpolation using SYNC mechanism to synchronise. The other is linear interpolation using SYNC and SYNC-Time to synchronise. The second one is helpful for SPS which have difficulties with giving a clear SYNC every sync-period

() I

Note

If no SYNC message is received the axle will stop after the SYNC-Time immediately.

10.9.2 Parameters

- Interpolation sub mode select (60C0_h)
- Interpolation data record (60C1_h)
- Interpolation time period (60C2_h)
- Interpolation sync definition (60C3_h)
- Interpolation data configuration (60C4_h)

10.9.3 Linear Interpolation Sub Mode 1 (60C0_h)

If the SYNC object is not received before the controller is finished, the axle will stop after the defined SYNC cycle.

10.9.4 Linear Interpolation Sub Mode –1 (60C0_h)

Since some slower SPS System have problems with a constant SYNC Message period or do have a big Jitter on this signal it is recommended to use this mode instead.

The controller checks if the position value in Object $60C1_h$ has been updated. If now the Controller has finished the linear interpolation within the SYNC-period instead of stopping it will continue interpolation with this new value until the next SYNC is received. When the delayed SYNC arrives it will recalculate the interpolation.

11. Controller with Control- and Statusword

11.1 Object 6040_h: Controlword

The controlword consists of bits for:

- the controlling of the state
- the controlling of operating modes

The bits of the controlword are defined as follows:

1511	10	9	8	7	64	3	2	1	0
manufacturer specific	rese	rved	halt	fault	operation	enable	quick	enable	switch
				reset	mode specific	operation	stop	voltage	on
									LSB

Bits 0 – 3 and 7:

Device control commands are triggered by the following bit patterns in the controlword:

Command	Bit of the controlword					Transitions
	7	3	2	1	0	
	Fault reset	Enable	Quick stop	Enable	Switch on	
		operation		voltage		
Shutdown	0	Х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3*
Switch on	0	1	1	1	1	3**
Disable voltage	0	Х	Х	0	Х	7,9,10,12
Quick stop	0	Х	0	1	Х	7,10,11
Disable	0	0	1	1	1	5
operation						
Enable	0	1	1	1	1	4,16
operation						
Fault reset	\uparrow	Х	Х	Х	Х	15

* In the state "Switched on" the drive executes the functionality of this state

** There is no functionality in the state "Switched on". The drive does not do anything in this state.

Bits 4 - 6 and 8:

These bits are operation mode specific.

Bit	Operation Mode			
	Interpolated Positioning Mode	Profile Position Mode	Profile Velocity Mode	Homing Mode
4	Enable IP Mode	New Set-point	Reserved	Homing operation start
5	-	Change set immediately	Reserved	Reserved
6	-	Absolute / Relative	Reserved	Reserved
8	Halt	Halt	Halt	Halt

Bits 9 –15:

These bits are reserved for future use.

11.2 Object 6041_h: Statusword

The statusword indicates the current state of the drive. No bits are latched. The statusword consists of bits for:

- the current state of the drive,
- the operating state of the mode.

Bit	Description
0	Ready to switch on
1	Switched on
2	Operation enabled
3	Fault
4	Voltage enabled
5	Quick stop
6	Switch on disabled
7	Warning
8	Reserved
9	Remote
10	Target reached
11	Internal limit active
12-13	Operation mode specific
14	mode of operation finished
15	Reserved

Bits 0 – 3, 5 and 6:

The following bits indicate the status of the device:

Value (binary)	State
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Bit 4: Voltage Enabled:	
	High voltage is applied to the drive when this bit is set to 1.
Bit 5: Quick Stop:	
	When reset, this bit indicates that the drive is reacting on a quick stop request
Bit 7: Warning:	
	A drive warning is present if bit 7 is set. The cause means no error but a state that has to be mentioned, e.g. temperature limit, job refused. The status of the drive does not change. The cause of this warning may be found by reading the fault code parameter. The bit is set and reset by the device.
Bit 9: Remote:	
	If bit 9 is set, then parameters may be modified via the CAN-network, and the drive executes the content of a command message. If the bit remote is reset, then the drive is in local mode and will not execute the command message.
Bit 10: Target reached:	
	If bit 10 is set by the drive, then a set-point has been reached. The set- point is dependent on the operating mode.

Bit 11: Internal Limit Active:

This bit set by the drive indicates, that an internal limitation is active (e.g. position range limit).

BIT 12 and BIT 13:

These bits are operation mode specific.

Bit	Operation Mode			
	Interpolated	Profile Position Mode	Profile Velocity Mode	Homing Mode
	Positioning Mode			
12	Interpolated Position	Set-point	Speed	Homing attained
	Mode Active	acknowledge		
13	reserved	Following error	Max slippage error	Homing error

BIT 14:

Mode of operation finished / ready for command.

12. Object Dictionary

12.1 Scope

The object dictionary is divided into the following sections:

- communications segment
- manufacturer specific segment
- profile segment

Used abbreviations:		
INTEGER 8	8bit-value	-128,, 127
INTEGER 16	16bit-value	-32768,, 32767
INTEGER 32	32bit-value	-2147483648,, 2147483647
UNSIGNED 8	8bit-value	0,, 255
UNSIGNED 16	16bit-value	0,, 65535
UNSIGNED 32	32bit-value	0,, 4294967295
VISIBLE STRING	ASCII-Character	20 _h ,, 7E _h

Access:

RO RW WO C	Read Only Read Write Write Only Constant	The object value is read only. The object value may be read and written. The object value may only be written. The object value is constant and not changeable.
<u>Upper/Lc</u>	ower Limit:	During write access to the object dictionary the limits are checked. The limits may differ from the recommendations in DSP 402.
<u>Units:</u>		esiMot does not support the factor group. The following units apply:

Position Units	incr. (Increments) - Consider resolution of encoder respectively Hall-sensors
Velocity Units	rpm
Acceleration Units	rpm /s

12.1.1 Broadcast Objects of the Pre-defined Connection Set

Object	Function code (binary)	Resulting COB-ID	Communication Parameters at Index
NMT	0000	0	-
SYNC	0001	128 (80 _h)	1005 _h

Object	Function	Resulting	Communication
	code	COB-ID	Parameters at
	(binary)		Index
EMERGENCY	0001 _b	129 (81 _h) – 255 (FF _h)	1014 _h , 1015 _h
PDO1 (tx)	0011 _b	385 (181 _h) – 511 (1FF _h)	1800 _h
PDO1 (rx)	0100 _b	513 (201 _h) – 639 (27F _h)	1400 _h
PDO2 (tx)	0101 _b	641 (281 _h) – 767 (2FF _h)	1801 _h
PDO2 (rx)	0110 _b	769 (301 _h) – 895 (37F _h)	1401 _h
PDO3 (tx)	0111 _b	897 (381 _h) – 1023 (3FF _h)	1802 _h
PDO3 (rx)	1000 _b	1025 (401 _h) – 1151 (47F _h)	1402 _h
PDO4 (tx)	1001 _b	1153 (481 _h) – 1279 (4FF _h)	1803 _h
PDO4 (rx)	1010 _b	1281 (501 _h) – 1407 (57F _h)	1403 _h
SDO (tx)	1011 _b	1409 (581 _h) – 1535 (5FF _h)	1200 _h
SDO (rx)	1100 _b	1537 (601 _h) – 1663 (67F _h)	1200 _h
NMT Error	1110 _b	1793 (701 _h) – 1919 (77F _h)	1016 _h ,1017 _h
Control			

12.1.2 Peer-to-Peer Objects of the Pre-defined connection Set

Ē

Note

This table has to be seen from the devices point of view.

The pre-defined connection set always applies to the standard CAN frame with 11-bit identifier, even if extended CAN – frames are present in the network.

12.2 Communications Segment

For a detailed description of all communication parameters see CiA Standard 301³ and DSP 402⁴.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
1000 _h	/	Device Type	UNSIGNED 32	1	1	/	RO	Indicates the used profile and type.Bit 0 – 15Profile number (DSP 402)Bit 16 – 23Drive type (Servo Drive Bit 17)Bit 24 – 31not used
1001 _h	/	Error Register	UNSIGNED 8	/	/	/	RO	Represents the error state of the device.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
1002 _h	/	Manufacturer Status Register	UNSIGNED 32	/	/	/	RO	This object indicates the operation modes and error states of the device. Bit 0: Initialisation OK
								Bit 1: Homed
								Bit 2: Regulator active
								Bit 3: Position reached
								Bit 4: Axle in motion
								Bit 5: Ramp active
								Bit 6: Brake active
								Bit 7: Error
								Bit 8: Direction (only in amplifier version)
								Bit 9: Enabled
								Bit 10: Stop
								Bit 11: Hardware limit switch P
								Bit 12: Hardware limit switch N
								Bit 13: Software travel limit active
								Dit 14. Software limit of travel P Dit 15: Software limit of travel N
								Bit 16: Logic supply voltage too low
								Bit 17: Logic supply voltage too high
								Bit 18: Reference voltage too low
								Rit 19: -
								Bit 20: Motor supply voltage too low
								Bit 21: Motor supply voltage too high
								Bit 22' -
								Bit 23: Ballast voltage too high
								Bit 24: Warning temperature output stage
								Bit 25: Error temperature output stage
								Bit 26: -
								Bit 27: -
								Bit 28: Warning temperature motor
								Bit 29: Error temperature motor
								Bit 30: -
								Bit 31: -

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
1003 _h	00 _h	Pre-defined Error Field	UNSIGNED 32	/	/	/	RW	The object at index 1003h holds the errors that have occurred on the device and have been signalled via the Emergency Object. In doing so it provides an error history. Up to 10 error messages are hold. Writing a "0" to sub-index 0 deletes the entire error history (empties the array). Other values are not permitted.
	01 _h	standard error field		-	-		RO	0: no error 1: Wrong or missing data 2: Wrong or missing regulator data 3: Tracking error 4: Timeout drive 5: Axle in motion 6: Wrong ramp parameter 7: Travel for ramp to far 8: Limit switch + 9: Limit switch - 10: Limit of travel range + exceeded 11: Limit of travel range - exceeded 12: Motor temperature too high 13: Temperature of output stage too high 14: Over-voltage motor 15: Under-voltage motor 16: Over-voltage logic 17: Under-voltage logic 18: EEPROM Checksum error 19: Stop applied – Status information only - 20: Stop applied (error message) 21: Overload motor 22: Profibus login missing 23: Error at initialisation 24: Waiting for enable 25: Working mode wrong 26: Bus off-line 27: RS232/RS485 Trigger Timeout 28: Axle not referenced

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
								29: Wrong value – Status information only -
								30: Reference voltage is too low
								31: Range of travel exceeded
								32: Wrong set value mode
								34: Regulator state wrong
								35: CANopen error
								36: Encoder error
								37: Reference type not supported
	02 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	03 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	04 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	05 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	06 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	07 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	08 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	09 _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
	0A _h	standard error field	-	-	-	-	RO	(see Sub-Index 01 _h)
1005 _h	00 _h	COB-ID Sync	UNSIGNED 32 STRING	-	-	-	RW	Index 1005_h defines the COB-ID of the Synchronisation Object (SYNC). Further, it defines whether the device generates the SYNC. The SYNC- Message is transmitted as Broadcast (NODE-ID 0). Bit 0-10: Identifier Bit 11- 28: If Bit 29 = 1, Bits 11-28 of 29 Bit Identifier Bit 29: 0 = 11 bit Identifier 1 = 29 bit Identifier Bit 30: 0 = device is no SYNC Producer 1 = device is SYNC Producer Bit 31: don't care Contains the manufacturer device name. (esiMot)
1000n	00n	Device Name					Ŭ	
1009 _h	00 _h	Manufacturer Hardware Version	STRING	-	-	-	С	Contains the manufacturer hardware version description
100A _h	00 _h	Manufacturer Software Version	STRING	-	-	-	С	Contains the manufacturer software version description.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
100C _h	00 _h	Guard Time	UNSIGNED 16	65535	0	msec	RW	The objects at index $100C_h$ and $100D_h$ include the guard time in milliseconds and the life time factor. The life time factor multiplied with the guard time gives the life time for the Life Guarding Protocol. It is in not used
100D _h	00 _h	Life Time Factor	UNSIGNED 8	255	0	-	RW	The life time factor multiplied with the guard time gives the life time for the node guarding protocol. It is 0 if not used.
1010 _h	00 _h	Store Parameter Field	UNSIGNED 8	-	-	-	RO	 This object supports the saving of parameters in non-volatile memory. Sub index 1: all parameter Sub index 2: Communications parameter Sub index 3: Applications parameter To do this write a "save" to the according sub-index.
	01 _h	all parameter	UNSIGNED 32	-	-	-	RW	Safe all parameter
	02 _h	Communications parameter	UNSIGNED 32	-	-	-	RW	Safe Communications parameter
	03 _h	Applications parameter	UNSIGNED 32	-	-	-	RW	Safe Applications parameter
1011 _h	00 _h	Restore Parameter Field	UNSIGNED 8	-	-	-	RO	 With this object the default values of parameters according to the communication or device profile are restored. By read access the device provides information about its capabilities to restore these values. Sub index 1: all parameter Sub index 2: Communications parameter Sub index 3: Applications parameter
	01 _h	all parameter	UNSIGNED	-	-	-	RW	To do this write a "load" to the according sub-index. Restore all parameter
			32					

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	02 _h	Communications parameter	UNSIGNED 32	-	-	-	RW	Restore Communications parameter
	03 _h	Applications parameter	UNSIGNED 32	-	-	-	RW	Restore Applications parameter
1014 _h	00 _h	COB-ID EMCY	UNSIGNED 32	-	-	-	RO	Index 1014_h defines the COB-ID of the Emergency Object (EMCY). The COB-ID is 80_h + Node-ID.
1015 _h	00 _h	Inhibit Time Emergency	UNSIGNED 16	65535	0	100µs	RW	The inhibit time for the EMCY message can be adjusted via this entry. If this entry exists it must be writeable in the object dictionary. The time is multiplied by of 100µs This parameter is used to avoid bus locking by higher priority messages. A 0 deactivates this feature.
1016 _h	00 _h	Consumer Heartbeat Time	UNSIGNED 32	-	-	-	RW	The consumer heartbeat time defines the expected heartbeat cycle time and thus has to be higher than the corresponding producer heartbeat time configured on the device producing this heartbeat. Monitoring starts after the reception of the first heartbeat. If the consumer heartbeat time is 0 the corresponding entry is not used. The time has to be a multiple of 1ms (lo WORD). The lo BYTE of the hi WORD defines the node ID to be monitored.
1017 _h	00 _h	Producer Heartbeat Time	UNSIGNED 16	65535	0	msec	RW	The producer heartbeat time defines the cycle time of the heartbeat. The producer heartbeat time is 0 if it is not used. The time is a multiple of 1ms. With active monitoring the device sends cyclic its actual state to the NMT-Master. In this case the motor regulator is a heartbeat producer and the NMT-Master is consumer.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
1018 _h	00h	Identity Object		-	-	-	-	 The object at index 1018_h contains general information about the device. Vendor-ID Product code Revision number Serial number Not used at this time.
1200 _h	00 _h	Server SDO Parameter 1	UNSIGNED 8	-	-	-	RO	This object defines the COB-IDs for the default Server-SDO. A SDO-Server may also be a slave containing an object dictionary. In this case the esiMot. An ID for exchange between client and server is defined.
	01 _h	COB-ID Client -> Server (rx)	UNSIGNED 32	-	-	-	RO	600 _h + NODE-ID
	02 _h	COB-ID Server -> Client	UNSIGNED 32	-	-	-	RO	580 _h + NODE-ID
1400 _h	00 _h	Receive PDO Communication Parameter 1	UNSIGNED 8	-	-	-	RO	Contains the communication parameters for the PDOs the device is able to receive. According to DSP 402 the first receive PDO is appropriate for the state machine of the drive This controlword controls the state machine. PDOs may only be processed in NMT-state operational. A parameter change may be accomplished in state pre-operational.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission Type 1,, 240: Synchronous transmission, triggered by every n-th SYNC-Message. 254, 255: Asynchronous transmission.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
1401 _h	00 _h	Receive PDO Communication Parameter 2	UNSIGNED 8	-	-	-	RO	According to DSP 402 the second receive PDO is appropriate for the operating mode of the drive This controlword controls the state machine and modes of operation. PDOs may only be processed in NMT-state operational. A parameter change may be accomplished in state pre-operational.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission Type 1,, 240: Synchronous transmission, triggered by every n-th SYNC-Message. 254, 255: Asynchronous transmission.
1402 _h	00 _h	Receive PDO Communication Parameter 3	UNSIGNED 8	-	-	-	RO	According to DSP 402 the third receive PDO is appropriate for the position profile mode of the drive This controlword controls the state machine and the target position (pp). A positioning may be relative or absolute started or stopped. PDOs may only be processed in NMT-state operational. A parameter change may be accomplished in state pre-operational.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission Type 1,, 240: Synchronous transmission, triggered by every n-th SYNC-Message. 254, 255: Asynchronous transmission.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
1403 _h	00 _h	Receive PDO Communication Parameter 4	UNSIGNED 8	-	-	-	RO	According to DSP 402 the forth receive PDO is appropriate for the profile velocity mode of the drive This controlword controls the state machine and the target velocity (pv). A positioning may be relative or absolute started or stopped. PDOs may only be processed in NMT-state operational. A parameter change may be accomplished in state pre-operational.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission Type 1,, 240: Synchronous transmission, triggered by every n-th SYNC-Message. 254, 255: Asynchronous transmission.
1600 _h	00 _h	Receive PDO Mapping Parameter 1	UNSIGNED 8	-	-	-	RW	Number of mapped objects.
	01 _h	1 st mapped object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6040_h (Controlword DSP 402)
	02 _h	2 nd mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	03 _h	3 rd mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	06 _h	6 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	07 _h	7 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	08 _h	8 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1601 _h	00 _h	Receive PDO Mapping Parameter 2	UNSIGNED 8	-	-	-	RW	Number of mapped objects.
	01 _h	1 st mapped object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6040_h (Controlword DSP 402)
	02 _h	2 nd mapped object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6060_h (Modes of Operation DSP 402)
	03 _h	3 rd mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	06 _h	6 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 - 7: Object length (8bit) Bit 8 - 16: Sub-Index (8 bit) Bit 16 - 31: Index (16 bit)
	07 _h	7 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	08 _h	8 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1602 _h	00 _h	Receive PDO Mapping Parameter 3	UNSIGNED 8	-	-	-	RW	Number of mapped objects.
	01 _h	1 st mapped object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6040_h (Controlword DSP 402)
	02 _h	2 nd mapped object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object $607A_h$ (Target Position DSP 402)
	03 _h	3 rd mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	06 _h	6 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	07 _h	7 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	08 _h	8 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1603 _h	00 _h	Receive PDO Mapping Parameter 4	UNSIGNED 8	-	-	-	RW	Number of mapped objects.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	01 _h	1 st mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 - 7:Object length (8bit)Bit 8 - 16:Sub-Index (8 bit)Bit 16 - 31:Index (16 bit)Object 6040_h (Controlword DSP 402)
	02 _h	2 nd mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 - 7:Object length (8bit)Bit 8 - 16:Sub-Index (8 bit)Bit 16 - 31:Index (16 bit)Object $60FF_h$ (Target Velocity DSP 402)
	03 _h	3 rd mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	06 _h	6 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	07 _h	7 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	08 _h	8 th mapped object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1800 _h	00 _h	1 st Transmit PDO Parameter	UNSIGNED 8	-	-	-	RO	The communications parameter of PDOs. Number of Subindices 5.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission type: 1,, 240: Synchronous transmission, triggered by n- th SYNC-Message. 254, 255: Asynchronous Event Driven
	03 _h	Inhibit Time	UNSIGNED 16	-	-	100 msec	RW	This parameter defines the minimum time between two successive Transmit-PDOs.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	04 _h	Compatibility Entry	UNSIGNED 16	-	-	-	RW	-
	05 _h	Event Timer	UNSIGNED 16	-	-	msec	RW	The parameter "event timer " defines the cycle time of the PDO transmission.
1801 _h	00 _h	2 nd Transmit PDO Parameter	UNSIGNED 8	-	-	-	RO	Defines the communication parameters of the PDO. Number of Subindices 5.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission type: 1,, 240: Synchronous transmission, triggered by n- th SYNC-Message. 254, 255: Asynchronous Event Driven
	03 _h	Inhibit Time	UNSIGNED 16	-	-	100 msec	RW	This parameter defines the minimum time between two successive Transmit-PDOs.
	04 _h	Compatibility Entry	UNSIGNED 16	-	-	-	RW	-
	05 _h	Event Timer	UNSIGNED 16	-	-	msec	RW	The parameter "event timer " defines the cycle time of the PDO transmission.
1802 _h	00 _h	3 rd Transmit PDO Parameter	UNSIGNED 8	-	-	-	RO	Defines the communication parameters of the PDO. Number of Subindices 5.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission type: 1,, 240: Synchronous transmission, triggered by n- th SYNC-Message. 254, 255: Asynchronous Event Driven
	03 _h	Inhibit Time	UNSIGNED 16	-	-	100 msec	RW	This parameter defines the minimum time between two successive Transmit-PDOs.
	04 _h	Compatibility Entry	UNSIGNED 16	-	-	-	RW	-
	05 _h	Event Timer	UNSIGNED 16	-	-	msec	RW	The parameter "event timer " defines the cycle time of the PDO transmission.
1803 _h	00 _h	4 th Transmit PDO Parameter	UNSIGNED 8	-	-	-	RO	The communications parameter of PDOs. Number of Subindices 5.
	01 _h	COB-ID	UNSIGNED 32	-	-	-	RW	COB-ID of PDO

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	02 _h	Transmission Type	UNSIGNED 8	-	-	-	RW	Transmission type: 1,, 240: Synchronous transmission, triggered by n- th SYNC-Message. 254, 255: Asynchronous Event Driven
	03 _h	Inhibit Time	UNSIGNED 16	-	-	100 msec	RW	This parameter defines the minimum time between two successive Transmit-PDOs.
	04 _h	Compatibility Entry	UNSIGNED 16	-	-	-	RW	-
	05 _h	Event Timer	UNSIGNED 16	-	-	msec	RW	The parameter "event timer " defines the cycle time of the PDO transmission.
1A00 _h	00 _h	1 st Transmit PDO Mapping	UNSIGNED 8	-	-	-	RW	Contains the mapping for the PDOs the device is able to transmit.
	01 _h	1 st Mapped Object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6041_h (Statusword DSP 402)
	02 _h	2 nd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	03 _h	3 rd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	06 _h	6 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	07 _h	7 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	08 _h	8 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1A01 _h	00 _h	2 nd Transmit PDO Mapping	UNSIGNED 8	-	-	-	RW	Here are the objects defined which are mapped into the RPDO.
	01 _h	1 st Mapped Object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6041_h (Statusword DSP 402)
	02 _h	2 nd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6061_h (Modes of Operation Display DSP 402)
	03 _h	3 rd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	06 _h	6 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	07 _h	7 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	08 _h	8 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1A02 _h	00 _h	3 rd Transmit PDO Mapping	UNSIGNED 8	-	-	-	RW	Here are the objects defined which are mapped into the RPDO.

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Description
	01 _h	1 st Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 - 7:Object length (8bit)Bit 8 - 16:Sub-Index (8 bit)Bit 16 - 31:Index (16 bit)Object 6041_h (Statusword DSP 402)
	02 _h	2 nd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 - 7:Object length (8bit)Bit 8 - 16:Sub-Index (8 bit)Bit 16 - 31:Index (16 bit)Object 6064h (Position Actual Value DSP 402)
	03 _h	3 rd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	04 _h	4 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	05 _h	5 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	06 _h	6 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	07 _h	7 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
	08 _h	8 th Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 – 7: Object length (8bit) Bit 8 – 16: Sub-Index (8 bit) Bit 16 – 31: Index (16 bit)
1A03 _h	00 _h	4 th Transmit PDO Mapping	UNSIGNED 8	-	-	-	RW	Here are the objects defined which are mapped into the RPDO.
	01 _h	1 st Mapped Object	UNSIGNED 32	-	-	-	RW	Bit $0 - 7$:Object length (8bit)Bit $8 - 16$:Sub-Index (8 bit)Bit $16 - 31$:Index (16 bit)Object 6041_h (Statusword DSP 402)
	02 _h	2 nd Mapped Object	UNSIGNED 32	-	-	-	RW	Bit 0 - 7:Object length (8bit)Bit 8 - 16:Sub-Index (8 bit)Bit 16 - 31:Index (16 bit)Object $606C_h$ (Velocity Actual Value DSP 402)

Index	Sub- index	Name	Data type	Upper Limit	Lower Limit	Unit	Access	Descriptio	n
	03h	3rd Mapped Object	UNSIGNED	-	-	-	RW	Bit 0 – 7: Object length (8b	pit)
			32					Bit 8 – 16: Sub-Index (8 bit)	
								Bit 16 – 31: Index (16 bit)	
	04h	4th Mapped Object	UNSIGNED	-	-	-	RW	Bit 0 – 7: Object length (8b	pit)
			32					Bit 8 – 16: Sub-Index (8 bit)	
								Bit 16 – 31: Index (16 bit)	
	05h	5th Mapped Object	UNSIGNED	-	-	-	RW	Bit 0 – 7: Object length (8b	pit)
			32					Bit 8 – 16: Sub-Index (8 bit)	
								Bit 16 – 31: Index (16 bit)	
	06h	6th Mapped Object	UNSIGNED	-	-	-	RW	Bit 0 – 7: Object length (8b	pit)
			32					Bit 8 – 16: Sub-Index (8 bit)	
								Bit 16 – 31: Index (16 bit)	
	07h	7th Mapped Object	UNSIGNED	-	-	-	RW	Bit 0 – 7: Object length (8b	pit)
			32					Bit 8 – 16: Sub-Index (8 bit)	
								Bit 16 – 31: Index (16 bit)	
	08h	8th Mapped Object	UNSIGNED	-	-	-	RW	Bit 0 – 7: Object length (8b	pit)
			32					Bit 8 – 16: Sub-Index (8 bit)	
								Bit 16 – 31: Index (16 bit)	

12.3 Manufacturer specific segment

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
2001 _h	00 _h	Elapsed hour counter	UNSIGNED 32	/	/	min	RO	Shows the time in minutes
2002 _h	00 _h	Stored position	INTEGER 32	2147483647	-2147483648	Incr.	RO	If the mode "store positioning against power outage" is selected, the positioning is stored here.
2003 _h	00 _h	Axle number Servo Link Protocol	UNSIGNED 8	255	0	-	RO	Defines the axle number for the serial protocol. This parameter needs to be 1 if no RS485 bus is used.
2004 _h	00 _h	Bus address	UNSIGNED 8	127	1	-	RW	Defines the CANopen Bus address of the esiMot. This feature is available form version 010.108.02up only.

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
2005 _h	00 _h	Operating Mode at Start-up	UNSIGNED 8	4	1	-	RW	This defines the operating mode when the controller changes to "operation enabled" after power up. Value 1: Speed control
2006 _h	00 _h	Speed measurement system	UNSIGNED 8	3	0	-	RO	Value 4: Positioning The speed measurement system Value 0: Hall sensors Value 1: Incremental encoder Value 2: Absolute encoder Value 3: external encoder
2007 _h	00 _h	Position measurement system	UNSIGNED 8	2	0	-	RO	The position measurement system Value 0: Hall sensors Value 1: Incremental encoder Value 2: Absolute encoder Value 3: external encoder
2009 _h	00 _h	store positioning against power outage	UNSIGNED 8	1	0	-	RW	Defines the position storage mode 0: Do not store position 1: Store position
200A _h	00 _h	Position regulator axis resolution	UNSIGNED 32	-	-	-	RO	Internal value
200C _h	00 _h	Response to errors	UNSIGNED 8	1	0	-	RW	Defines the stop mode on errors. 0: Immediate stop 1: Ramp stop
200D _h	00 _h	baudrate	UNSIGNED 8	5	0	-	RW	Defines the baud rate: 0 : 50 kBit/s 1: 100 kBit/s 2: 125 kBit/s 3: 250 kBit/s 4: 500 kBit/s 5: 1000 kBit/s

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
2010 _h	00 _h	Input function Input 1	UNSIGNED 8	15	0	-	RW	Defines the function of input 1. 0: Not used 8: Reference switch 9: Limit switch + 10: Limit switch - 13: Jog + 14: Jog - 15: Rapid traverse (jog mode) Other values are not permitted. A "reset node" is needed after each change.
2011 _h	00 _h	Input function Input 2	UNSIGNED 8	15	0	-	RW	Defines the function of input 2. (see object 2010 _h)
2012 _h	00 _h	Input function Input 3	UNSIGNED 8	25	0	-	RW	Defines the function of input 3. 0: Not used 8: Reference switch 9: Limit switch + 10: Limit switch - 13: Jog + 14: Jog - 15: Rapid traverse (jog mode) 25: Clock / Channel A Other values are not permitted. A "reset node" is needed after each change.

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
2013 _h	00 _h	Input function Input 4	UNSIGNED 8	26	0	-	RW	Defines the function of input 4.0:Not used8:Reference switch9:Limit switch +10:Limit switch -13:Jog +14:Jog -15:Rapid traverse (jog mode)26:Direction / Channel BOther values are not permitted. A "reset node" is
								needed after each change.
2016 _h	00 _h	Input function Input 7	UNSIGNED 8	15	0	-	RW	Defines the function of input 7. (see object 2010 $_{\rm b}$)
2017 _h	00 _h	Input function Input 8	UNSIGNED 8	15	0	-	RW	Defines the function of input 8. (see object 2010 _b)
2018 _h	00 _h	Output function Output 1	UNSIGNED 8	7	0	-	RW	Defines the function of output 1 0: Not used 1: Ready 2: Regulator active 3: Error 4: Warning 5: Position reached 6: Axle in motion 7: Ballast active Other values are not permitted. A "reset node" is needed after each change.
2019 _h	00 _h	Output function Output 2	UNSIGNED 8	7	0	-	RW	Defines the function of output 2 (see object 2018 b)
201A _h	00 _h	Output function Output 3	UNSIGNED 8	7	0	-	RW	Defines the function of output 3 (see object 2018 b)
201B _h	00 _h	Output function Output 4	UNSIGNED 8	7	0	-	RW	Defines the function of output 4 (see object 2018 _b)

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
201C _h	00 _h	Output status	UNSIGNED 8	-	-	-	RO	Actual status of outputs
201D _h	00 _h	Input status	UNSIGNED 8	-	-	-	RO	Actual status of inputs
2020 _h	00 _h	Response time Brake opening	UNSIGNED 8	65535	0	msec	RO	Defines the response time of the brake opening.
2021 _h	00 _h	Response time Brake closing	UNSIGNED 16	65535	0	msec	RO	Defines the response time of the brake closing.
2022 _h	00 _h	Brake management	UNSIGNED 8	1	0	-	R0	Controls the brake management 0: off 1: on
209A _h	00 _h	Homing Deceleration	UNSIGNED 16	10000	0	msec	RW	Defines the deceleration ramp on homing.
209B _h	00 _h	Homing Torque Limit	UNSIGNED 8	100	0	%	RW	Torque limit for "Homing to block".
209C _h	00 _h	Reference run required	BOOLEAN	1	0	-	RW	Indicates the necessity of homing prior to a positioning.
20A0 _h	00 _h	Ramp to Vmax	UNSIGNED 16	9999	0	msec	RW	Defines the ramp time to Vmax. (=607F _h max. Profile velocity)
20B0 _h	00 _h	Jog acceleration	UNSIGNED 16	9999	0	msec	RW	Defines the acceleration time in jog mode
20B1 _h	00 _h	Jog deceleration	UNSIGNED 16	10000	1	msec	RW	Defines the deceleration time in jog mode
20B2 _h	00 _h	Jog tip increments	UNSIGNED 32	65535	0	incr.	RW	Defines the number of increments on each tip in jog mode
20B3 _h	00 _h	Jog creep speed	UNSIGNED 16	10000	1	Rpm	RW	Defines the creep speed in jog mode
20B4 _h	00 _h	Jog rapid traverse	UNSIGNED 16	10000	1	Rpm	RW	Defines the rapid traverse speed in jog mode
20C0 _h	00 _h	Electronic axle type	UNSIGNED 8	1	0	-	RW	Electronic axle type 0: Clock + direction 1: Channel A + Channel B
20C1 _h	00 _h	Electronic axle direction	UNSIGNED 8	1	0	-	RW	Sense of rotation 0: normal 1: inverted

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
20C2 _h	00 _h	Electronic axle edge detection	UNSIGNED 32	2	0	-	RW	Edge detection 0: Positive 1: Negative 2: Both edges
20C3 _h	00 _h	Electronic axle gear ratio	UNSIGNED 32	9999999	1	/1000 incr.	RW	Defines the ratio between input increments and axle move increments. (1000 = 1:1)

12.4 Profile segment

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
6007 _h	00 _h	Abort Connection Option Code	INTEGER 16	2	3	-	RO	 The content of this object selects the function to be performed when the connection to the network is lost or a "Preop" or "Stop" command is received. 2: Device control command 'Disable Voltage'
								3: Device control command 'Quick Stop'
6040 _h	00 _h	Controlword	UNSIGNED 16	-	-	-	RO	The device controlword controls all functions of the drive. For a detailed description see chapter 11.1.
6041 _h	00 _h	Statusword	UNSIGNED 16	-	-	-	RO	The state of the drive is shown in the statusword For details see chapter 11.2.
605A _h	00 _h	Quick Stop Option Code	INTEGER 16	2	2	-	RW	The Quick Stop option code may only be set to 2. 2: slow down on quick stop ramp
605B _h	00 _h	Shutdown Option Code	INTEGER 16	0	0	-	RW	The Shutdown option code describes the response to a shutdown command. It may only be set to 0. 0: Disable drive function
605C _h	00 _h	Disable Operation Option Code	INTEGER 16	1	1	-	RW	The Disable Operation Option Code may only be set to 1. 1: Quick stop

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
605D _h	00 _h	Halt Option Code	INTEGER 16	1	1	-	RW	The Halt option code may only be set to 1. 1: Quick stop
605E _h	00 _h	Fault Reaction Option Code	INTEGER 16	1	2	-	RW	Defines the slow down mode on fault conditions. 1: slow down on slow down ramp 2: slow down on quick stop ramp After slow down, the motor is free to rotate. Note: On some critical faults, like undervoltage of the output stage, the drive is disabled immediately, without a slowdown ramp and free to rotate.
6060 _h	00 _h	Modes of Operation	INTEGER 8	-	-	-	WO	This object defines the adjusted mode of operation-1:Electronic Axle0:Selection through object 2005h1:Profile Position Mode3:Profile Velocity Mode6:Homing Mode
6061 _h	00 _h	Modes of Operation Display	INTEGER 8	-	-	-	RO	This object indicates the adjusted mode of operation. -1: Electronic Axle 0: Selection through object 2005h 1: Profile Position Mode 3: Profile Velocity Mode 6: Homing Mode
6064 _h	00 _h	Position Actual Value	INTEGER 32	2147483647	-2147483648	incr.	RO	Displays the actual position.
Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
-------------------	-----------------	---------------------------	----------------	----------------	----------------	-------	--------	--
6065 _h	00 _h	Following Error Window	UNSIGNED 32	65535	1	incr.	RW	The following error window defines a range of tolerated position values symmetrically to the position demand value. The following error monitoring is only active in Profile Position and Homing mode.
6067 _h	00 _h	Position Window	UNSIGNED 32	65535	0	incr.	RW	The position window defines a symmetrical range of accepted positions relatively to the target position. If the actual value of the position encoder is within the position window, this target position is regarded as reached. The position window is monitored only in Profile Position Mode.
606B _h	00 _h	Velocity Demand Value	INTEGER 32	10000	0	rpm	RO	The output value of the trajectory generator may be corrected by the output value of the position control function. It is then provided as a demand value for the velocity controller and given in the velocity units.
606C _h	00 _h	Velocity Actual Value	INTEGER 32	10000	0	rpm	RO	The velocity actual value is also represented in velocity units and is coupled to the velocity used as input to the velocity controller.
606D _h	00 _h	Velocity Window	UNSIGNED 16	1000	0	rpm	RW	The velocity window monitors whether the required process velocity has been achieved after an eventual acceleration or deceleration (braking) phase. It is given in velocity units
6078 _h	00 _h	Current Actual Value	INTEGER 16	1000	-1000	%0	RO	The current actual value refers to the instantaneous current in the drive motor. The value is given per thousand of rated current.
607A _h	00 _h	Target Position	INTEGER 32	2147483647	-2147483648	incr.	RW	The target position is the position that the drive should move to in position profile mode using the current settings of motion control parameters such as velocity, acceleration, deceleration, etc. The target position is given in increments.

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
607Ch	00 _h	Home Offset	UNSIGNED 32	2147483647	-2147483648	incr.	RW	The home offset object is the difference between the zero position for the application and the machine home position (found during homing), it is measured in increments.
607Dh	00 _h	Software Position Limit	INTEGER 32	-	-	-	RO	Software position limit contains the sub- parameters min position limit and max position limit. These parameters define the absolute position limits for the position demand value and the position actual value. Every new target position is checked against these limits.
	01 _h	Software Limit N	INTEGER 32	2147483647	-2147483648	incr.	RW	Min position limit
	02 _h	Software Limit P	INTEGER 32	2147483647	-2147483648	incr.	RW	Max position limit
607Eh	00 _h	Polarity	UNSIGNED 8	-	-	-	RW	Position demand value and position actual value are multiplied by 1 or -1 depending on the value of the polarity flag.
607Fh	00 _h	Max Profile Velocity	UNSIGNED 32	10000	1	rpm	RW	The max profile velocity is the maximum allowed speed in either direction during a profiled move. It is given in rpm. The upper limit is checked against object 6080h.
6080h	00 _h	Max Motor Speed	UNSIGNED 32	10000	1	rpm	RO	The max motor speed is the maximum allowable speed for the motor in either direction and is given in rpm.
6081h	00 _h	Profile Velocity	INTEGER 32	10000	1	rpm	RW	The profile velocity is the velocity normally attained at the end of the acceleration ramp during a profiled move and is valid for both directions of motion.
6083h	00 _h	Profile Acceleration	UNSIGNED 32	-	$> \frac{max. rpm}{9,999 s}$	rpm/s	RW	The profile acceleration is given in rpm/s.
6084h	00 _h	Profile Deceleration	UNSIGNED 32	-	$> \frac{max. rpm}{9,999 s}$	rpm/s	RW	The profile deceleration is given in rpm/s

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
6085h	00 _h	Quick Stop Deceleration	UNSIGNED 32	-	$> \frac{max. rpm}{9,999 s}$	rpm/s	RW	The quick stop deceleration is the deceleration used to stop the motor if the 'Quick Stop' command is given and the quick stop option code (see 605Ah) is set to 2.
6086h	00 _h	Motion Profile Type	INTEGER 16	0	0	-	RW	The motion profile type is used to select the type of motion profile used to perform a profiled move. Only linear move is supported. 0: linear
6098h	00 _h	Homing Method	INTEGER 8			-	RW	The homing method object determines the method that will be used during homing The homing modes are described in chapter 10.7 from page 36 on.
6099h	00 _h	Homing Speeds	UNSIGNED 32	-	-	rpm	RO	This entry in the object dictionary defines the speeds used during homing and is given in rpm
	01 _h	Search speed	UNSIGNED 32	10000	0	rpm	RW	Speed during search for switch
	02 _h	Position speed	UNSIGNED 32	10000	0	rpm	RW	Speed during search for zero
609Ah	00 _h	Homing Acceleration	UNSIGNED 16	-	$> \frac{max. rpm}{9,999 s}$	rpm/s	RW	The homing acceleration establishes the acceleration to be used for all accelerations and decelerations with the standard homing modes and is given in rpm/s.
60C0h	00 _h	Interpolation sub mode select	INTEGER 16	0	-1	-	RW	1: Linear Interpolation -1: Linear Interpolation (SYNC-Tolerant)
60C1h	00 _h	Interpolation data record	INTEGER 32	-	-	-	RW	
	01 _h	Next Positon record	INTEGER 32	2147483647	-2147483648	Incr.	RW	Position Value.
60C2h	00 _h	Interpolation time period	RECORD	-	-	-	RW	The actual sync cycle is calculated with Interpolation time units x Interpolation time index
	01 _h	Interpolation time units	UNSIGNED 8	255	1	-	RW	1 – 255 time units

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
	02 _h	Interpolation time index	INTEGER 8	-3	0	-	RW	-3: msec -2: 10ms -1: 100ms 0: 1s
60C3h	00 _h	Interpolation sync definition	UNSIGNED 8	-	-	-	RW	If ever a SYNC event is not 1 the SYNC period recalculates Interpolation time units x Interpolation time index x Used SYNC event.
	01 _h	Synchronize on group	UNSIGNED 8	0	0	-	RW	SYNC Group always 0.
	02 _h	lp sync on every n event	UNSIGNED 8	255	0	-	RW	Every n SYNC event is used for interpolation.
60C4h	00 _h	Interpolation data configuration	RECORD				-	
	01 _h	Maximum buffer size	UNSIGNED 32	1	1	-	RO	Maximum buffer size. Always 1.
	02 _h	Actual buffer size	UNSIGNED 32	1	1	-	RW	Actual buffer size. Always 1.
	03 _h	Buffer organization	UNSIGNED 8	0	0	-	RW	FIFO
	04 _h	Buffer position	UNSIGNED 16	1	1	-	RW	Always 1.
	05 _h	Size of data record	UNSIGNED 8	1	1	-	WO	Always 1.
	06 _h	Buffer clear	UNSIGNED 8	-	-	-	WO	N/A
60F6h	00 _h	Torque Control Parameter Set	UNSIGNED 8	-	-	-	RO	The torque control parameters
	01 _h	Gain	UNSIGNED 16	1000	1		RW	P-portion of the torque regulator
	02 _h	Time	UNSIGNED 16	1000	1		RW	I-portion of the torque regulator
	03 _h	Int-Limit	UNSIGNED 16	100	1		RW	I-limitation of the torque regulator
60F9h	00 _h	Velocity Control Parameter Set	UNSIGNED 8	-	-		RO	The speed control parameters

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
	01 _h	Gain	UNSIGNED 16	1000	1	-	RW	P-portion of the speed regulator
	02 _h	Time	UNSIGNED 16	1000	1	-	RW	I-portion of the speed regulator
	03 _h	Int-Limit	UNSIGNED 16	100	1	%	RW	I-limitation of the speed regulator
60FBh	00 _h	Position Control Parameter Set	UNSIGNED 8	-	-	-	RO	The position control parameters
	01 _h	Gain	UNSIGNED 16	1000	1	-	RW	P-portion of the position controller
	02 _h	Time	UNSIGNED 16	1000	1	-	RO	reserved
	03 _h	Int-Limit	UNSIGNED 16	100	1	%	RO	reserved
60FFh	00 _h	Target Velocity	INTEGER 32	10000	-10000	rpm	RW	The target velocity is the input for the trajectory generator in Profile Velocity Mode.
6410h	00 _h	Motor Data	UNSIGNED 8	-	-	-	RO	This object contains information about the connected motor
	01 _h	Pair of Poles	UNSIGNED 8	-	-	-	RO	Number of pole pairs
	02 _h	Maximum Motor Speed	UNSIGNED 16	-	-	rpm	RO	Maximum motor speed
	03 _h	Rated Motor Speed	UNSIGNED 16	-	-	rpm	RO	Rated motor speed
	04 _h	Max Motor Current	UNSIGNED 16	-	-	0,1 A	RO	Maximal motor current
	05 _h	Nominal Motor Current	UNSIGNED 16	-	-	0,1 A	RO	Nominal motor current
	06 _h	Nominal Voltage	UNSIGNED 16	-	-	V	RO	Nominal motor voltage
	07 _h	I2T-Time	UNSIGNED 16	-	-	S	RO	Motor overload time
	08 _h	Commutation Mode	UNSIGNED 8	-	-	-	RO	Commutation mode
	09 _h	e.m.f. constant	UNSIGNED 16	-	-	mV/1/ min	RO	e.m.f. constant

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
	0A _h	Encoder Resolution	UNSIGNED 16	10000	1	incr.	RO	Axis resolution
	0B _h	Main Configuration Register	UNSIGNED 32	-	-	-	RO	Hardware configuration
	0C _h	Motor supply	UNSIGNED 16	60	24	V	RW	Motor supply voltage
	0D _h	User Current Limit	UNSIGNED 8	100	0	%	RW	Maximum current in % of peak current
	0E _h	Sense of rotation speed regulator	UNSIGNED 8	-	-	-	RO	Internal
	0F _h	Direction of control speed regulator	UNSIGNED 8	-	-	-	RO	Internal
	10 _h	Sense of rotation position regulator	UNSIGNED 8	-	-	-	RO	Internal
	11 _h	Direction of control position regulator	UNSIGNED 8	-	-	-	RO	Internal
	12 _h	Polarity	UNSIGNED 8	-	-	-	RO	internal
6510h	00 _h	Drive Data	UNSIGNED 8	-	-	-	RO	Drive data
	01 _h	Output stage temperature warning	UNSIGNED 16	-	-	-	RO	Output stage temperature warning threshold
	02 _h	Output stage temperature error	UNSIGNED 16	-	-	-	RO	Output stage temperature error threshold
	03 _h	Motor temperature warning	UNSIGNED 16	-	-	-	RO	Motor temperature warning threshold
	04 _h	Motor temperature error	UNSIGNED 16	-	-	-	RO	Motor temperature error threshold
	05 _h	Motor supply voltage low	UNSIGNED 16	-	-	-	RO	Under-voltage motor supply threshold
	06 _h	Motor supply over- voltage	UNSIGNED 16	-	-	-	RO	Over-voltage motor supply threshold
	07 _h	Maximal current	UNSIGNED 16	-	-	-	RO	Maximal current

Index	Sub- index	Name	Data type	Upper limit	Lower limit	Unit	Access	Description
	08 _h	Nominal current	UNSIGNED 16	-	-	-	RO	Nominal current
	09 _h	Ballast threshold	UNSIGNED 16	-	-	-	RO	Ballast threshold voltage

13. Diagnosis and trouble shooting

13.1 CAN error messages

Error messages are transmitted through emergency message. The error codes correspond to the following table. Object 1003h with its subindices holds the error history with error-numbers.

Error No. Object 1003h	CAN error COB-ID 80h + Node ID	Description	Red Led (H1)	Multicolour LED (H2)	Ready – Signal	Acknowled gement required	Brake mode
Axis S	State Errors					1	
0	-	"Enable" present, no errors (normal operating mode)	Off	Green On	On	No	-
24	18h	Wait for enable	Off	fast blink Green	On	No	A
3	FF54h	Tracking error	On	Blink green 1x	Off	Yes	В
4	FF52h	Timeout drive	On	Blink orange 1x	Off	Yes	-
5	FF53h	Axle moving	On	Blink green 2x	Off	Yes	-
6	FF55h	Wrong ramp parameter	On	Blink orange 4x	Off	Yes	-
7	FF56h	Travel for ramp too far	On	Blink orange 4x	Off	Yes	-
19	13h	Stop without error-message applied	Off	Blink orange 2x	On	No	-
20	FF59h	Stop with error-message applied	On	Blink orange 2x	Off	Yes	-
25	FF50h	Working mode wrong	On	Blink orange 3x	Off	Yes	-
28	FF22h	Axle not referenced	On	Blink orange 3x	Off	Yes	-
31	FF15H	Range of travel exceeded	On	Blink orange 3x	Off	Yes	-
32	FF13h	Reference lost	On	Blink orange 3x	Off	Yes	-
33	FF24h	Wrong set value mode	On	Blink orange 3x	Off	Yes	-
34	FF50H	Regulator state wrong	On	Blink orange 3x	Off	Yes	-
37	FF61h	Reference type not supported	Off	Green on	Off	Yes	-

13.2 Status LED's

Error No. Object 1003h	CAN error COB-ID 80h + Node ID	Description	Red Led (H1)	Multicolour LED (H2)	Ready – Signal	Acknowled gement required	Brake mode
41	FF65h	Output-stage overload	On	Blink red 3x	Off	Yes	В
43	FF67h	Limit switch + direction deviant	On	Blink green 3x	Off	Yes	В
44	FF68h	Limit switch - direction deviant	On	Blink green 3x	Off	Yes	В
49	31h	Temperature sensor motor	On	Red on	Off	Yes	В
Suppl	y and Temper	ature Errors	•			•	
12	4310h	Motor temperature too high	On	Blink red 1x	Off	Yes	A
13	4210h	Temperature output stage too high	On	Blink red 2x	Off	Yes	В
14	3210h	Over-voltage motor	On	Blink red 3x	Off	Yes	В
15	3220h	Under-voltage motor	On	Blink red 3x	Off	Yes	В
16	3110h	Over-voltage logic	On	Blink red 4x	Off	Yes	В
17	3120h	Under-voltage logic	On	Blink red 4x	Off	Yes	В
21	2220h	Overload motor	On	Blink red 1x	Off	Yes	A
30	FF57h	Reference voltage too low	On	Blink red 4x	Off	Yes	В
Comn	nunication Err	ors			•		
26	1Ah	Bus offline	Blink	Blink orange 1x	Off	Yes	A
22	16h	Profibus login missing	Blink	Blink orange 2x	Off	Yes	-
27	FF51h	RS232/RS485 time out	Blink	Blink orange 3x	Off	Yes	A
35	23h	CANopen error	Blink	Blink orange 1x	Off	Yes	А
Intern	al Errors						
23	FF58h	Error at initialisation	On	Red on	Off	Yes	В

Error No. Object 1003h	CAN error COB-ID 80h + Node ID	Description	Red Led (H1)	Multicolour LED (H2)	Ready – Signal	Acknowled gement required	Brake mode
18	5530h	EEPROM Checksum error	On	Red on	Off	Yes	В
36	FF60h	Encoder error	On	Red on	Off	Yes	В
42	FF66h	Temperature sensor output stage	On	Red on	Off	Yes	В

13.3 Status description:

Error	Error message / Status	Error cause / Remedies
0	No error	-
1	Wrong or missing data	
2	Wrong or missing regulator data	
3	Tracking error	The drive is unable to follow the set value. The drive may be sluggish or even blocked. The parameter for the allowable tracking error is set too small. The acceleration is too high. Encoder signals erroneous. Incorrect direction of control. Loop gain insufficient or excessive (drive is oscillating).
4	Timeout drive	Desired position was not reached within the given time. Tune regulator settings and/or enlarge target position window.
5	Axle moving	It was attempt to send a new drive or positioning command while the drive was in motion.
6	Erroneous ramp parameter	The drive can't comply with the given data. The acceleration time is too long
7	Travel for ramp to far.	It's not possible to calculate the ramp for the given data.
12	Motor temperature (PTC sensor)	If the motor temperature rises due to heavy load the temperature can become too high. Check the load of the motor for any problems. The temperature error can be acknowledged when the temperature of the controller went down again.
13	Output-stage temperature too high	The temperature of the controller is too high. For safety reason the controller has been shut down. Check the nominal current/maximum current of the motor and machine. The temperature error can be acknowledged only when the temperature of the controller went down again.
14	Over-voltage motor	When the Motor source exceeds one of the limits defined in the settings this error is given. This can happen due to spikes in the supply voltages. In most cases, the over-voltage can also occur if the motor needs to slow down a heavy load. Check machine and state. An external ballast resistor can help.
15	Under-voltage motor	The motor voltage undercuts the limits given by parameter. This may be caused by spikes on the supply voltage. In most cases under-voltage is a result of a heavy duty. A more powerful power supply may help.

Error	Error message / Status	Error cause / Remedies
16	Over-voltage logic	In most cases this can happen due to spikes in the supply voltages. If the motor and logic use the same source the over- voltage can occur if the motor needs to slow down a heavy load. Check machine and state. An external ballast resistor can help. It's recommended to use separate power supplies for motor and logic.
17	Under-voltage logic	The logic supply falls below 18V. Maybe there are drop-outs in the supply voltage. Insufficient filtering of the supply voltage. A more powerful power supply may help.
18	EEPROM checksum error	Unit was switched off, during parameter input. Check parameters.
19	Stop applied – Status Information -	"Stop without error message" present There was a falling edge on the stop input. This can be caused by user or by a power loss on the stop input. No acknowledgement is required.
20	Stop applied - Error message -	"Stop with error message" present. There was a falling edge on the stop input. This can be caused by user or by a power loss on the stop input. Check machine and state. If no error or dangerous situation can be discovered try to acknowledge the "Stop" Error with a raising edge on the enable input. Be aware that acknowledgement can only be successful when the error which caused this state no longer exists.
21	Overload motor	Demanded motor power too high, The drive may be sluggish or even blocked, high acceleration values, high motor load with high ambient temperature
22	reserved	
23	Error at initialisation	Internal initialisation error. No access to EEPROM. Please consult your dealer.
24	Waiting for enable	All configuration and controller data is correct. The motor control is able to operate and waits for enable.
25	Working mode wrong	A function was selected which is in the current working mode not possible. For example a position value was given to the speed regulator.
26	Bus off-line	The connection to the fieldbus has failed. The LED H3 is flashing if the bus connection couldn't be established after power-on.
27	RS232/RS485-Trigger timeout	The RS232/RS485 interface link was disconnected, while the axle was moving with a drive command initiated from RS232/RS485.
28	Axle not referenced	A drive command was given whilst no reference run was done.
29	Wrong value – Status Information –	An incorrect value was transmitted e.g. speed > n _{max}
30	Reference voltage too low	The internal reference voltage is too low. Please check the logic supply.
31	Range of travel exceeded.	The maximum countable number of increments has been exceeded.
32	Reference lost	The motor moved after the voltage was switched off. The procedure for position storage safe against power outage was not accomplished.
33	Wrong set value mode	Clock/Direction inputs are active and it was tried to start a record or another set value was given.
34	Wrong regulator state	The response time of the brake was not taken care for and a new drive command given.
35	CANopen error	Reserved error
36	Encoder error	A not existing encoder was selected in the parameters.
37	Reference type not supported	A not supported referencing mode was selected. No error message, only status information.
38	reserved	
39	reserved	

Error	Error message / Status	Error cause / Remedies
40	reserved	
41	Output-stage overload	Possible cause: The drive may be sluggish or even blocked, high acceleration values, high load with high ambient temperature, motor faulty, cables broken
42	Temperature sensor output stage error	The value is not plausible. There is a malfunction of the sensor.
43	Limit switch + direction deviant	The limit switch in + direction was activated while the motor was moving in – direction
44	Limit switch – direction deviant	The limit switch in - direction was activated while the motor was moving in + direction
45	reserved	
46	reserved	
47	reserved	
48	reserved	
49	Motor temperature	The value is not plausible. There is a malfunction of the sensor.
	sensor error	
55	EEPROM access error	queue error
56	EEPROM access error	write error
57	EEPROM access error	read error

(F

Note

All error messages must be acknowledged through the appropriate command through fieldbus

See transitions in the state machine in chapter 10.3 on page 30.

14. Schematic view

15. Technical Data

15.1.1 General

Ambient temperature:

Storage temperature: Humidity class: Emission: Interference:

15.1.2 Power supply

Input voltage **Logic & I/O – supply**: Nominal value: Admissible range: Ripple: Reverse polarity protection: External fuse: Current consumption: Resistance to drop-outs: Duration of drop-outs: Repetition:

Input voltage Motor - supply:

esiMot6/1 Nominal value: esiMot6/1 Admissible range:

esiMot6/5 Nominal value: esiMot6/5 Admissible range:

esiMot7/1 Nominal value: esiMot7/1 Admissible range:

esiMot7/2 Nominal value: esiMot7/2 Admissible range:

Galvanic isolation: Reverse polarity protection: External fuse: Current consumption:

EN 61800-3 Cat. C2 / Industrial EN 61800-3 Cat. C2 / Industrial

24 VDC 18 – 30 VDC \leq 10 % With diode max 1 A / medium slow ca. 0,1 A at 24 VDC

10 msec 1 s

24V VDC 18 – 48V DC

48V DC 18 – 60V DC

48V DC 18 – 60V DC

48V DC 18 – 60V DC

no galvanic isolation to logic Yes max 10 A / medium slow Up to 14A, depending on load / motor type see table on page 91

15.1.3 Analogue input (optional)

Type: Resolution: Max. Error: Galvanic isolation:	Differential input 11 Bit 2% No
 15.1.3.1 Voltage input Nominal value: Maximal input voltage:¹⁾ Minimal input voltage:¹⁾ 1) in relation to power supply ground Input impedance: 	± 10 V +30 V -12 V 27 kOhm
15.1.3.2 Current input (Custom specific, only on Nominal value: Maximal input current: Input impedance / load resistor:	# <i>request)</i> ± 20 mA ± 25 mA 100 Ohm
outside controller	inside controller
e.g. LIY(C)Y 2 x 0,25 mm ² ground connection: connect on large surface on mounting panel	++

15.1.4 Digital inputs

Number of inputs:	Up to 8 (depending on options)
Input voltage.	
Nominal value:	+24 VDC
Maximal voltage:	+30 VDC
Threshold High-Level:	+12 VDC
Threshold low-level:	+ 3 VDC
Minimal input voltage:	0 VDC
Input current at nominal voltage:	typ.: 1,5 mA
Delay time inputs:	typ.: 10 μsec
Low->High: High->Low:	typ.: 10 μsec
Galvanic isolation:	No

15.1.5 Digital outputs: 24 VDC

1 ... 4 (depending on options) Number of outputs: Transistor output (MOS-FET) Type of output: Output current at high signal: Nominal value: 0,5 A Residual current at low signal: 250 μA Power supply: +24V logic supply Short circuit protection: yes, self-reactivating Current limitation: 1 A 1,0 A Trip current: External protection with inductive loads: Varistor (e.g. Murrelektronik VG-A/24) or quenching diode (e.g. Murrelektronik LG-A01) recommended Parallel connection admissible: No Delay time outputs: typ.: 100 µsec Low->High: typ.: 100 µsec High->Low: Galvanic isolation: No inside controller outside controller power supply +24V

15.2 Ballast circuit

Threshold: 60V (default value)

Depended on operating voltage.

Internal ballast resistor:

Peak power/100ms75WMax continuous power9W

It's possible to connect an external ballast resistor parallel to the internal resistor. An external ballast resistor is only required on extreme situations.

External ballast resistor:

Minimal value	10 Ohm
Peak power / 100ms /10 Ohm	422W
Max continuous power	42W

Attention

The ballast circuit is not short circuit proof. Wrong wiring of a ballast resistor could destroy the ballast circuit and the motor regulator.

Attention

The surface of the external brake resistor can reach temperatures of up to 450°C. Mount the resistor only in areas where heat can't cause a fire. Take care that no flammable or heat-sensitive materials are close to the resistor.

15.3 Standstill brake (Option)

Via a digital input the optional standstill brake of the motor can be switched in.

The supply of the brake is the motor supply. The voltage for the brake is limited internal to a maximum of 24V. The maximum current is I_{max} = 0,5A.

15.4 RS232-Interface

The parameters of the motor regulator are set via the serial interface. There is PC-Software "Servo Link" 019.060.xx available to set up the parameters. See chapter 18 on page 95.

Attention

For continuous operation, the interface must be protected with an external galvanic isolation.

15.5 Motors

esiMot Size		6/1	6/2	6/5	7/1	7/1	7/2	7/2
Motor power (S3)	[W]	120	180	260	500	600	400	480
Rated power	[W]	70	110	200	340	430	300	380
Nominal torque	[Nm]	0,22	0,35	0,65	1,1	1,1	1,8	1,8
Impulse torque	[Nm]	0,50	0,70	1,20	1,6	1,6	2,3	2,3
Rated speed	[min ⁻¹]	3000	3000	3000	3000	3750	1600	2000
Inertia rotative	[gcm ²]	71,6	128	172	530	530	530	530
Motor supply	[V]	24	24	48	48	60	48	60
Nominal current	[A]	4,0	5,6	3,5	9,0	9,0	8,0	8,0
Peak current	[A]	14	14	14	14	14	14	14
Logic supply	[V]	24	24	24	24	24	24	24
Axle resolution without	[lor]	30	30	30	_	_	_	_
incremental encoder	[ihi]	- 50	- 50	- 50	-	-	-	-
Axle resolution with								
incremental encoder	[lpr]	2048	2048	2048	4096	4096	4096	4096
(Positioning mode)								
Axle resolution with		4096 x	4096 x	4096 x	4096 x	4096 x	4096 x	4096 x
absolute encoder	[lpr]	4096	4096	4096	4096	4096	4096	4096
(Positioning mode)		1000					1000	
Protection class*	IP	64	64	64	64	64	64	64
(mounting specific)						• · ·	•••	
Length k	[mm]	148	173	198	186	186	186	186
Length k1 (with brake)	[mm]	♦	♦	\diamond	236	236	236	236
Length k2 (with absolute	[mm]	179	204	229	199	199	199	199
encoder)	[,,,,,]							
Weight ca.	[kg]	1,37	1,8	2,3	2,3	2,3	2,3	2,3
Weight with brake ca.	[kg]	\diamond	\diamond	\diamond	2,48	2,48	2,48	2,48

♦ On Request

Attention

* All connectors have to be plugged in and tightened. Use a protection cap, if no connector is required. IP40 at motor axle. With optional axle seal IP64. Mounted gear-boxes

IP40 at motor axle. With optional axle seal IP64. Mounted gear-boxes provide no additional protection unless specially sealed. For protection class of the gear-box consult gear-box data sheet.

15.6 Dimensions and position map

Size		6/1	6/2	6/5	7/1	7/2
Length k	[mm]	148	173	198	186	186
Length k1 (Brake)	[mm]		On request		236	236
Length k2 (absolute encoder)	[mm]	179	204	229	199	199
Weight ca.	[kg]	1,4	1,8	2,3	2,3	2,3
Weight with brake ca. [kg]		On request			2,5	2,5

16. Connections

16.1 Signal connector X1

X1 Pin:	Function	Remarks
A	Digital Output 1	
В	Digital output 2	
С	Optional: Digital input 7 / Digital Output 3	Option
D	Optional: Digital input 8 / Digital Output 4	Option
E	Digital input 1	
F	Digital input 2	
G	Digital input 3	
Н	Digital input 4	
I	Analogue input + (Option)	0-10V; +/- 10V; 0/4 – 20mA
K	Analogue input - (Option)	0-10V; +/- 10V; 0/4 – 20mA
L	Sensor supply +24V	
М	Sensor supply 0V	(GND)
N	Do not connect	
0	Do not connect	
Р	Do not connect	
R	Do not connect	
S	RS232 – Interface TxD	
Т	RS232 – Interface RxD	
U	RS232 – Interface reference potential	Don't connect to GND

Signal connector: male cable solder-connector 630.01409-1

16.2 Power supply connector X2

X2 Pin-No.:	Function	Remarks	
1	Power supply motor +24V / +48V	Power supply for	
2	Power supply motor +24V / +48V	logic and motor	
3	Power supply logic +24V		
4	GND (reference for logic and motor)		
5	GND (reference for logic and motor)		
6	Output for external ballast resistor	(connect other side of resistor to motor +)	

Power connector: female cable solder-connector 630.01409-0

16.3 Fieldbus connector X3

X3 Pin-No.:	Function	Remarks
1	Shield	CANopen
2	Not used	
3	CAN-GND	
4	CANH	
5	CANL	

CAN-Bus Connector: female cable connector 630.01409-3

17. Block diagram

18. Accessories

18.1 Programming kit Servo Link

Consisting of:

- PC-Software for parameter adjustment, online-diagnostics and programming.
- Programming adapter and RS232 cable.

18.2 Assembled feed lines

- Standard and drag-chain suitable cables
- Signal, Bus and Power-cable
- With plug on one or both sides

Signal cable:

Cable colour	Function				
Violet	Digital Output 1				
Blue	Digital Output 2				
Red	Digital Output 3 / Digital Input 7				
Green	Digital Output 4 / Digital Input 8				
Yellow	Digital Input 1				
White-Green	Digital Input 2				
Brown-Green	Digital Input 3				
White	Digital Input 4				
Red-Blue	Digital Input 5 / Analogue Input +				
Grey-Pink	Digital Input 6 / Analogue Input -				
Yellow-Brown	Sensor supply +24V (output)				
White-Yellow	Sensor supply GND (output)				
Grey	RS232 - Interface TxD				
Pink	RS232 - Interface RxD				
Black	RS232 - Interface Reference Potential (Don't connect to GND)				
Brown	Don't connect				
White - Grey	Don't connect				
Grey - Brown	Don't connect				

Power cable

Cable colour	Function
Yellow	Motor supply +24V +60V
Green	Motor supply +24V +60V
Brown	Logic supply +24V
White	GND (Reference potential for Motor and Logic)
Grey	GND (Reference potential for Motor and Logic)
Pink	Output for external ballast resistor

Power cable (Alternative)

Cable No.	Function
1	Motor supply +24V +60V
2	Motor supply +24V +60V
3	Logic supply +24V
4	GND (Reference potential for Motor and Logic)
5	GND (Reference potential for Motor and Logic)
6	Output for external ballast resistor

CAN - bus Cable

Cable colour	Function
Shield	Shield
Red	Not used
Black	CAN-GND
White	CANH
Blue	CANL

18.3 Plugs

- Signal, Bus and Power connector

Enable the customer to assemble the feed-line to suit his needs best.

18.4 Bus accessories	
	- Termination resistors
	- Y-Adapter
18.5 Signal Converter	
	Converts 24V PLC-Signals to 5V RS422
18.6 Power supplies	
	Various voltages and current capabilities for DIN-Rail mounting.
18.7 Planetary Gear box	es
	Different sizes and quality grades from cost effective to high precision.

One to three stages with output torque's up to 100Nm

19. Models

19.1 esiMot

esiMotT/S.ABC.DE.FFF

- T/S: Type series and size of motor
- T/S = SC for Servo-controller (only electronics, no motor)
- A: Basic Version
 - 1 = Amplifier mode, Analogue set value input, 4x digital In, 1x digital Out, Encoder out
 - 2 = PLC interface, 8x digital In, 2x digital Out
 - 3 = PROFIBUS-DP, 4x digital In, 2x digital Out
 - 4 = CANopen, 4x digital In, 2x digital Out
 - 5 = RS485, 4x digital In, 2x digital Out
 - 6 = EtherCAT CoE, 4x digital In, 2x digital Out
 - 7 = PROFINET-IO, 4x digital In, 2x digital Out
- **B:** Position acquisition
 - 1 = Hall sensor (not available for esiMot7)
 - 2 = Incremental encoder (esiMot6=2048 incr./rev; esiMot7=4096 incr./rev)
 - 3 = Absolute encoder

C: Standstill brake

- 0 = No brake
- 1 = Brake
- D: Optional I/O Extension (only on fieldbus-versions A = 3-7)
 - 0 = 4/2 dig. I/O(standard)
 - 1 = 6/2 dig. I/O (two additional inputs)
 - 2 = 4/2 dig. I/O + Analogue input
 - 3 = 4/1 dig. I/O + Analogue input, incremental encoder outputs
 - 4 = 4/4 dig. I/O (two additional outputs)
- E: Optional address switches (only on fieldbus-versions A = 3-5)
 - 0 = No switch
 - 1 = Address switches
- F: Special options

3 digits specify custom versions

To be omitted on standard types.

19.2 Gearboxes

Fitted gearboxes have their own label and are not coded into the esiMot identifier. For types and sizes, please consult separate gearbox brochure.

20. Disposal

This product consists of various materials. The following table shows the correct end-of-life treatment.

Material	Recycle	Dispose
Metal	Yes	No
Plastics material	Yes	No
Printed circuit board	No	Yes

Dispose the appropriate materials in accordance to the valid environmental protection laws.

Don't throw hazardous substances in domestic waste!

21. Bibliography

- ¹ CiA DR303-3 Indicator specification by CAN in Automation international users and manufacturers
- group e.V. ² CiA DR303-3 Indicator specification by CAN in Automation international users and manufacturers
- group e.V. ³ CiA Draft Standard 301 CANopen Application Layer and Communication Profile by CAN in Automation international users and manufacturers group e.V.
- ⁴ CiA Draft Standard Proposal 402 Device Profile Drives and Motion Control by CAN in Automation international users and manufacturers group e.V.